洛谷P1303A*B Problem高精度模拟乘法

题目描述

求两数的积。

输入格式

两行,两个整数。

输出格式

一行一个整数表示乘积。

输入输出样例

输入 #1复制

1 
2

输出 #1复制

2

说明/提示

每个数字不超过 10^{2000} ,需用高精。

经典的模拟题目, 模拟高精度乘法。

高精度乘法即超出计算机的整形范围,无法进行直接计算,因此所使用的算法

这里我们先看一下我们平时是怎么算乘法的

 那么再看一下如果使用计算机应该如何模拟乘法

 用计算机计算就是取消进位,然后再及进行每一位的加法

 最后再进行进位即可

现在就开始coding吧

先读入数据,将字符串的每一位数字转入动态数组。

这里的小技巧还是介绍一下,将字符串数字转换成普通的数字存入数组

将字符 减去 “0”就可以传换成数字

这里注意:字符串从个位数存到高位数

int main() {
    string a, b;
    cin >> a >> b; // a = "1222323", b = "2323423423"

    vector<int> A, B;
    for (int i = a.size() - 1; i >= 0; i--)
        A.push_back(a[i] - '0');
    for (int i = b.size() - 1; i >= 0; i--)
        B.push_back(b[i] - '0');

    auto C = mul(A, B);

    for (int i = C.size() - 1; i >= 0; i--)
        cout << C[i];

    return 0;
}

因为存在进位 , 个位数字,十位数字乘完存放的位置现在可以考虑一下如何将乘完后的数字如何存入到对应的数组当中了。

这里我们枚举两个数组A,B的两个数,每一位数相乘,存放在第三个数组的第i + j的位置上


    for (int i = 0; i < A.size(); i++)
        for (int j = 0; j < B.size(); j++)
            C[i + j] += A[i] * B[j];

现在开始进行进位 , 这里的进位和高精度加法有些相似 ,将该位上的数字%10就得到进位得数,让后将该位置上的数/10 , 得到了留下来的数

   for (int i = 0; i < C.size(); i++) { // i = C.size() - 1时 t 一定小于 10
        t += C[i];
        C[i] = t % 10;
        t /= 10;
    }

接下来将动态数组C中的数依次输出即可

#include <iostream>
#include <vector>

using namespace std;

vector<int> mul(vector<int> &A, vector<int> &B) {
    vector<int> C(A.size() + B.size() + 7, 0); // 初始化为 0,C的size可以大一点

    for (int i = 0; i < A.size(); i++)
        for (int j = 0; j < B.size(); j++)
            C[i + j] += A[i] * B[j];

    int t = 0;
    for (int i = 0; i < C.size(); i++) { // i = C.size() - 1时 t 一定小于 10
        t += C[i];
        C[i] = t % 10;
        t /= 10;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back(); // 必须要去前导 0,因为最高位很可能是 0
    return C;
}

int main() {
    string a, b;
    cin >> a >> b; // a = "1222323", b = "2323423423"

    vector<int> A, B;
    for (int i = a.size() - 1; i >= 0; i--)
        A.push_back(a[i] - '0');
    for (int i = b.size() - 1; i >= 0; i--)
        B.push_back(b[i] - '0');

    auto C = mul(A, B);

    for (int i = C.size() - 1; i >= 0; i--)
        cout << C[i];

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值