洛谷P1011车站

题目描述

火车从始发站(称为第 1 站)开出,在始发站上车的人数为 a,然后到达第 2 站,在第 2 站有人上、下车,但上、下车的人数相同,因此在第 2 站开出时(即在到达第 3 站之前)车上的人数保持为 a 人。从第 3 站起(包括第 3 站)上、下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第(n−1) 站),都满足此规律。现给出的条件是:共有 n 个车站,始发站上车的人数为 a ,最后一站下车的人数是 m(全部下车)。试问 x 站开出时车上的人数是多少?

输入格式

输入只有一行四个整数,分别表示始发站上车人数 a,车站数 n,终点站下车人数 m 和所求的站点编号 x。

输出格式

输出一行一个整数表示答案:从 x 站开出时车上的人数。

输入输出样例

输入

5 7 32 4

输出

13

说明/提示

对于全部的测试点,保证1≤a≤20,1≤x≤n≤20,1≤m≤2×104。

来看一下这道题目 , 火车从开车开始没有人,第一次上车a人,下车0人 。第二次上车人数未知,这里假设人数为b ,则上车人数是b人,下车人数也是b人 , 第三次上车人数是a + b人,下车人数是b人。这里就不过多进行文字描述了,列个表格来看一下大概的情况吧

当走到最后一站的时候,车上所有的人都下车。以题目给的例子为例,最后一站下车的人数为32人,总共有7站,所以总共有6站满足我们现在需要找到的规律。

首先,从第四个开始,车上人数中,a的系数为前两次车上人数a的和然后-1

b的系数为前两次上车人数的和然后+1

那么知道最后一站的前一站 (第n - 1站) ,也就是最后一站下车的人数,所以可以推出b的计算公式

m = b * sum2[n - 1] + a * sum1[n - 1]

这样可以算出b =  (m - a * sum1[n - 1]) / sum2[n - 1]

现在我们是要求第x站车上人的个数, 所以依然可以用以上关于m的公式。

现在开始coding吧

	int a, b,n, x, m;
	sum1[1] = 1, sum1[2] = 1, sum1[3] = 2;
	cin >> a >> n >> m >> x;

读入数据,sum1是a的系数,sum2是b的系数,通过刚才的公式,可以计算下车之前,车上的人数,所以应该使用一下的递推

	for (int i = 4; i <= n - 1; i++) {
		sum1[i] = sum1[i - 1] + sum1[i - 2] - 1;
		sum2[i] = sum2[i - 1] + sum2[i - 2] + 1;
	}

最后用以上的公式推出b的答案,并且求得第x站时车上的人数。

将代码附在下面,有需要可以复制粘贴

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 100;
int sum1[N], sum2[N];
//sum1为a的系数
//sum2为b的系数
int main() {
	int a, b,n, x, m;
	sum1[1] = 1, sum1[2] = 1, sum1[3] = 2;
	cin >> a >> n >> m >> x;
	for (int i = 4; i <= n - 1; i++) {
		sum1[i] = sum1[i - 1] + sum1[i - 2] - 1;
		sum2[i] = sum2[i - 1] + sum2[i - 2] + 1;
	}
	b = (m - a * sum1[n - 1]) / sum2[n - 1];
	cout << a * sum1[x] + b * sum2[x];
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值