题目描述
火车从始发站(称为第 1 站)开出,在始发站上车的人数为 a,然后到达第 2 站,在第 2 站有人上、下车,但上、下车的人数相同,因此在第 2 站开出时(即在到达第 3 站之前)车上的人数保持为 a 人。从第 3 站起(包括第 3 站)上、下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第(n−1) 站),都满足此规律。现给出的条件是:共有 n 个车站,始发站上车的人数为 a ,最后一站下车的人数是 m(全部下车)。试问 x 站开出时车上的人数是多少?
输入格式
输入只有一行四个整数,分别表示始发站上车人数 a,车站数 n,终点站下车人数 m 和所求的站点编号 x。
输出格式
输出一行一个整数表示答案:从 x 站开出时车上的人数。
输入输出样例
输入
5 7 32 4
输出
13
说明/提示
对于全部的测试点,保证1≤a≤20,1≤x≤n≤20,1≤m≤2×104。
来看一下这道题目 , 火车从开车开始没有人,第一次上车a人,下车0人 。第二次上车人数未知,这里假设人数为b ,则上车人数是b人,下车人数也是b人 , 第三次上车人数是a + b人,下车人数是b人。这里就不过多进行文字描述了,列个表格来看一下大概的情况吧
当走到最后一站的时候,车上所有的人都下车。以题目给的例子为例,最后一站下车的人数为32人,总共有7站,所以总共有6站满足我们现在需要找到的规律。
首先,从第四个开始,车上人数中,a的系数为前两次车上人数a的和然后-1
b的系数为前两次上车人数的和然后+1
那么知道最后一站的前一站 (第n - 1站) ,也就是最后一站下车的人数,所以可以推出b的计算公式
m = b * sum2[n - 1] + a * sum1[n - 1]
这样可以算出b = (m - a * sum1[n - 1]) / sum2[n - 1]
现在我们是要求第x站车上人的个数, 所以依然可以用以上关于m的公式。
现在开始coding吧
int a, b,n, x, m;
sum1[1] = 1, sum1[2] = 1, sum1[3] = 2;
cin >> a >> n >> m >> x;
读入数据,sum1是a的系数,sum2是b的系数,通过刚才的公式,可以计算下车之前,车上的人数,所以应该使用一下的递推
for (int i = 4; i <= n - 1; i++) {
sum1[i] = sum1[i - 1] + sum1[i - 2] - 1;
sum2[i] = sum2[i - 1] + sum2[i - 2] + 1;
}
最后用以上的公式推出b的答案,并且求得第x站时车上的人数。
将代码附在下面,有需要可以复制粘贴
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 100;
int sum1[N], sum2[N];
//sum1为a的系数
//sum2为b的系数
int main() {
int a, b,n, x, m;
sum1[1] = 1, sum1[2] = 1, sum1[3] = 2;
cin >> a >> n >> m >> x;
for (int i = 4; i <= n - 1; i++) {
sum1[i] = sum1[i - 1] + sum1[i - 2] - 1;
sum2[i] = sum2[i - 1] + sum2[i - 2] + 1;
}
b = (m - a * sum1[n - 1]) / sum2[n - 1];
cout << a * sum1[x] + b * sum2[x];
return 0;
}