二叉树的遍历算法有多种,典型的有先序遍历、中序遍历、后序遍历以及层序遍历。而且这些遍历的递归算法较为简单,代码很少,容易实现,本文就是汇总二叉树遍历的递归算法,非递归算法将在下一篇文章中进行总结。本文中用到的二叉树实例如下:
3
/ \
9 20
/ \
15 7
二叉树定义和辅助函数如下:
- struct node {
- int data;
- struct node* left;
- struct node* right;
- };
- void visit(int data)
- {
- printf("%d ", data);
- }
1、先序遍历
先序遍历:先访问二叉树的根结点,而后遍历左子树,最后遍历右子树。先序遍历二叉树实例结果为:3 9 20 15 7。递归算法代码如下:
- void preOrder(struct node* root)
- {
- if (root == NULL)
- return;
- visit(root->data);
- preOrder(root->left);
- preOrder(root->right);
- }
2、中序遍历
中序遍历:先遍历二叉树的左子树,然后访问根结点,最后遍历右子树。中序遍历二叉树实例结果:9 3 15 20 7。递归算法代码如下:
- void inOrder(struct node* root)
- {
- if (root == NULL)
- return;
- inOrder(root->left);
- visit(root->data);
- inOrder(root->right);
- }
3、后序遍历
后序遍历:先遍历二叉树的左子树,然后遍历二叉树右子树,最后访问根结点。后序遍历二叉树实例结果:9 15 7 20 3。递归算法代码如下:
- void postOrder(struct node* root)
- {
- if (root == NULL)
- return;
- postOrder(root->left);
- postOrder(root->right);
- visit(root->data);
- }
4、层序遍历
对于先序遍历、中序遍历以及后序遍历的递归算法,没有什么好说的,时间复杂度都为O(n)。而层序遍历的递归算法则稍微复杂一点,因为本身层序遍历用非递归算法是很容易实现的,不过使用递归算法代码更简洁,虽然递归算法的效率并不高。层序遍历二叉树实例结果:
3
9 20
15 7
递归代码如下:
- void printLevel(struct node *p, int level)
- {
- if (!p) return;
- if (level == 1) {
- visit(p->data);
- } else {
- printLevel(p->left, level-1);
- printLevel(p->right, level-1);
- }
- }
- void printLevelOrder(struct node *root)
- {
- int height = maxHeight(root); //maxHeight计算二叉树高度,如二叉树实例高度为3
- for (int level = 1; level <= height; level++) {
- printLevel(root, level);
- printf("\n");
- }
- }
当二叉树高度为N时,此时递归层序遍历为最坏情况,时间复杂度为O(N^2)。当二叉树左右子树基本平衡时,时间复杂度为O(N),分析如下:
设访问第K层时间为T(k),则T(k)存在如下的递归公式:
T(k) = 2T(k-1) + c
= 2k-1 T(1) + c
= 2k-1 + c
当二叉树平衡时,则高度为O(lgN),则总时间为:T(1) + T(2) + ... + T(lg N)
= 1 + 2 + 22 + ... + 2lg N-1 + c
= O(N)
转自:http://blog.csdn.net/sgbfblog/article/details/7773002