Deep Convolutional Inverse Graphics Network(DCIGN)
Deep Convolutional Inverse Graphics Network摘要本文介绍了深度卷积逆图形网络(DC-IGN),该模型旨在学习可解释的图像表示形式,该图像与三维场景结构、深度旋转和光照变化等视角转换解耦(disentangled)。 DC-IGN模型由多层卷积和反卷积算子组成,并使用随机梯度变化贝叶斯(SGVB)算法进行训练[10]。我们提出了一种训练程序来鼓励图形代码层(graphics code layer)中的神经元代表特定的变换(例如姿势或光线)。给定单个..
原创
2020-09-07 20:37:01 ·
1640 阅读 ·
0 评论