静态噪声容限的统计分析
摘要
本文介绍了对反相器(作为任何SRAM存储单元的基本元件)的静态噪声容限进行统计分析的初步结果。由于概率计算准确,结果具有统计学意义,并应能实现更精确、更快且更好的良率估计。与蒙特卡洛仿真的比较支持上述结论。
关键词
统计分析,静态噪声容限,反相器
一、引言
在过去十年中,国际半导体技术路线图(ITRS)[1]指出了两个削弱摩尔定律的重大挑战:一个是power,另一个是reliability。可靠性问题由噪声和变异(目前仍缺乏充分理解)共同引起,而当前的分析方法过于简化,导致过度设计和良率损失。存储单元处于可靠性研究的前沿,因为它们依赖最小的尺寸来实现最大的容量。评估鲁棒性的一种众所周知的方法是计算静态噪声容限(SNMs)[2],该技术在设计SRAM存储单元[3],[4]时被广泛采用。
已建立的工业方法依赖于蒙特卡洛(MC)方法,该方法即使对于任意分布也能提供结果,但在需要估计高达ͷߪൊߪ的良率时速度较慢(需要数十亿次以上的仿真)。静态随机存取存储器(SRAM)存储单元的设计基于最坏情况下的蒙特卡洛分析,以限制良率损失。然而,这种方法是相对的(在统计上无明确意义),因为无法准确估计确切的概率,并且在大多数情况下无法捕捉真实效应(实际情况可能优于最坏情况)。另一种替代方法是使用针对具体问题的解析模型。这种方法同样耗时,且往往高度依赖于特定电路,因此缺乏灵活性。
事实上,一个主要目标是依赖一种准确且相对简单的统计方法,通过节省面积/成本并尽可能提升性能来减少过度设计。显然,基于影响电路元件的变量的统计描述(通过统计组合这些变量),准确计算与物理特性或性能指标相关的概率ܲ,是朝着正确方向迈出的一步。
本文将展示初步但具有统计意义的结果,用于精确计算反相器(SRAM存储单元的基本元件)的静态噪声容限概率。这些结果将与使用蒙特卡洛方法获得的结果进行比较。论文将首先回顾静态随机存取存储器设计的最新进展(第二部分),然后重点讨论晶体管和反相器(第三部分)。
II. 静态随机存取存储器统计设计的最新进展
许多论文讨论了SRAM存储单元,但很少有研究尝试使用不同于蒙特卡洛的方法来估计可靠性。然而,由于尺寸缩小带来的可靠性问题[5],近年来统计方法已开始受到关注。
在[6]中,作者提出了一种解析方法(基于牛顿‐拉夫逊法的收敛性和欧拉‐牛顿法的直接曲线追踪)来确定参数空间中成功与失效之间的边界。在்ܸு中引入了一种快速计算参数良率的技术,该技术基于对参数空间中通过/失败区域分界线所张成的概率超体积进行自适应几何计算。在[7]中建议利用非线性系统理论,通过快速分界线追踪算法分析SRAM动态稳定性特性。在[8]中对SRAM存储单元的静态噪声容限进行了解析评估,并随后进行了蒙特卡洛模拟。
在[10]中,作者使用矢量场分析来提取任意SRAM拓扑结构的静态与动态稳定性特性。该方法依赖于一种混合技术,通过在网表层级对空间进行量化并利用仿真求解实例,或直接求解方程,从而确定状态空间分界线。一旦生成矢量场并通过对零倾线交点发现亚稳态点后,便可从亚稳态点向状态空间边界插值与追踪矢量以找到分界线。在[11]中,将蒙特卡洛与重要性采样(通过在分布尾部增加采样以提高精度)相结合用于SRAM存储单元;而[12]则详细描述了一种良率曲面边界确定方法,该方法结合曲面点查找与全局搜索来定位曲面边界上的点。
在[13]中提出了一种理论方法,用于近似高维空间中分界线的切线。另一种更经典的方法是进行角点仿真,然后确定最坏情况角点[14]。为了更快地估计SRAM存储单元的故障率,[15]通过概率群体方法改进了重要性采样。文献[16]提出了SRAM存储单元读取裕度作为工艺变异和负偏置温度不稳定性函数的解析计算方法。同时,[17]引入了SRAM存储单元ܸௗ和ܸ௧的解析表达式(依赖于雅可比矩阵来计算ܸௗ和ܸ௧的联合概率密度函数)。
另一种解析方法[18]通过确定左噪声容限和右噪声容限的相关系数,并基于该相关系数估算SRAM存储单元的静态噪声容限。
研究由SRC(2013‐HJ‐2440)和英特尔公司(2013‐05‐24G)资助。
III. FROM TRANSISTORS TO AN INVERTER
通常,晶体管的尺寸设计用于超大规模集成电路设计者将沟道长度ܮ设为最小值ܮ,并通过调整沟道宽度来平衡上升和下降时间(ݐ௨ ؆ ݐௗ௪),经典(CLS)尺寸设计。一种以可靠性为中心、最大化静态噪声容限的方法在[22],[23]非常规尺寸设计中被详细阐述,以改善噪声容限。ܹ增大至最优(OPT)值,并使曲线(电压传输曲线)达到平衡。
蒙特卡洛模拟中的INV和OPT‐INV可参见图1,(a)
根据每个晶体管的尺寸计算ߪಹ。在特定输入/栅极电压ܸ下,晶体管处于导通或关断状态的概率可估计为[29]:
$$
ܲሺܸሻൌ \frac{e^{-(V-V_{TH})^2/(2\sigma_{V_{TH}}^2)}}{\sigma_{V_{TH}}\sqrt{2\pi}}
$$
为了清楚地了解尺寸调整对ܲሺܸሻ的影响,我们在图2中绘制了当ܮ和ܹ变化时nMOS和pMOS晶体管的ܲሺܸሻ,同时将其他参数保持在最小值(ܮ,ܹ)或最优值(ܮ௧)。
IV. 仿真结果
我们在此要分析的两个反相器是CLS‐INV和OPT‐INV,如图3(a)所示。四个晶体管的ܲሺܸሻ可在图3(b)和图3(c)中看到,看起来OPT‐INV的晶体管可能具有优势。根本问题是“优势有多大”。我们采用了20毫伏的量化步长(如[27]所示),因此Spice仿真在0毫伏到800毫伏之间以20毫伏为步长进行(共41个值)。对于构成反相器的两个晶体管的全部1681(41×41)种்ܸு组合,我们确定了每个这种“略有不同”的反相器的静态噪声容限。这些不是蒙特卡洛模拟,因为它们并非基于随机生成的்ܸு值。
CLS‐INV对应的噪声容限如图4(a)所示,而OPT‐INV的噪声容限如图4(b)所示。这里我们再次可以看到OPT‐INV优于CLS‐INV,但仍然不清楚“优势有多大”。
我们使用自己的统计方法计算了CLS‐INV和OPT‐INV的ܲሺܵܰܯሻ。该精确的逐步方法仅在[30]中有详细说明,目前由于专利申请正在待提交且尚未公开,因此无法披露。另一方面,应用这种新型统计方法的结果如图5(a)和图5(b)所示。
在理想条件下(无变异)的仿真显示,CLS‐INV和OPT‐INV的静态噪声容限分别为295毫伏和392毫伏。经过蒙特卡洛仿真(1000个VTCs;100万个SNMs)后,它们分别下降到113毫伏和199毫伏。通过分析图5(a)和5(b),CLS‐INV的ܲሺܵܰܯ ൌ ͳͳͲܸ݉ሻ约为10⁻²,而OPT‐INV也约为10⁻²。这些噪声容限接近蒙特卡洛仿真的结果,因此看起来1000个VTCs(100万个SNMs)对应于1%(10⁻²),这距离置信水平还相差很远。
INV‐CLS的最可能静态噪声容限为150毫伏(36%),而INV‐OPT为230毫伏(30%)。这些值低于理想值,但仍高于使用MC所获得的值。最后,从统计角度来看,应参考ܲሺܵܰܯሻ ൏ ͳͲ⁻¹⁰,其中INV‐CLS的静态噪声容限为50毫伏,INV‐OPT的静态噪声容限为120毫伏(见图5和表I)。
反相器同时显)
CLS‐INV和(b) OPT‐INV的静态噪声容限)
CLS‐INV和(b) OPT‐INV的P(SNM))
V. 结论
本文提出了对反相器(SRAM存储单元的基本元件)的静态噪声容限进行统计分析的初步结果。该分析给出了具有统计意义的结果,并已与使用蒙特卡洛方法获得的结果进行了比较。预期这将带来以下优势:(i) 更准确的概率估计;(ii) 更快(因不依赖蒙特卡洛方法);(iii) 更好的良率估计;(iv) 降低的生产成本(由于更高的良率)。最后,ܲሺܵܰܯሻ为非高斯分布,因为最可能值左右两侧的柱状图高度不均匀(图5(a)和(b))。我们计划通过分析经典的6T SRAM位单元继续这项工作。
| 表 I. 静态噪声容限与P(SNM)在22纳米 | ||
|---|---|---|
| CLS‐INV | OPT‐INV | |
| 理想SNM (mV) | 295 | 392 |
| MC仿真SNM (mV) | 113 | 199 |
| 最可能SNM (mV) | 150 | 230 |
| P(SNM) < 10⁻¹⁰时的SNM (mV) | 50 | 120 |
1572

被折叠的 条评论
为什么被折叠?



