算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令。
1、CREATE INDEX indexName ON table_name (column_name)
show INDEX from table_name; drop index index_name on table_name;
2、sql slow 最后发现是使用 #{xxx} 去注入参数时查询很慢,在使用${xxx}查询几乎和plsq中查询时间时一样的。
程序里的SQL、mybatis下的查询慢
3、list查詢 然後 content判斷,一個一個去判斷存在不可行,浪費连接资源。
4、msyql截取和获取字符串 update tb_order_plan_issue set line_num = left(line_num,1) WHERE char_length(line_num) >1
5、< < <= <= > >
6、java -jar -Xms3024m -Xmx6536m md-mes.jar >1.log
7、CURRENT_TIMESTAMP
8、 java org.springframework.boot.loader.JarLauncher
java org.springframework.boot.loader.JarLauncher -Xms3024m -Xmx6536m >1.log | md-mes.jar >1.log
9、mysql 时间作差 TIMESTAMPDIFF(unit,start,end)
unit分类:
MINUTE:以分钟为单位
HOUR:小时为单位
DAY:天为单位
MONTH:月为单位
10、WHERE create_time between '2022-03-28 07:00:00' and '2022-03-29 07:00:00'11、sqlserver 分组查询最新的时间的
SELECT rllu_number, SUBSTRING_INDEX(GROUP_CONCAT(create_time order by create_time desc ),',',1) from tb_melting_measurement
GROUP BY rllu_number
order by create_time desc ;
12、EXPLAIN EXPLAIN SELECT * from tb_order_plan order by create_time desc limit 100
分析sql是否使用索引,检查查询效率
13、linux 防火墙 firewall-cmd --zone=public --add-port=8099/tcp --permanent --- 开放端口
systemctl restart firewalld14、compgen -u ---- linux 查看所有用户
15、netsh wlan show profile
netsh wlan show profile MD-Office key=clear13、linux 防火墙 firewall-cmd --zone=public --add-port=8099/tcp --permanent --- 开放端口
systemctl restart firewalld14、compgen -u ---- linux 查看所有用户
15、netsh wlan show profile
netsh wlan show profile MD-Office key=clear
16、console.log(echarts.version);
17、mysql 保留两位小数 select round(109.456,2);
18、时间截取 left(jhks_time,13)
19、问题 try restarting transaction20、select * from information_schema.innodb_trx kill 3265708
21、ALTER TABLE bzrkb_smrk ALTER COLUMN zjgxm VARCHAR(30) 修改sqlserver表字段长度
22、sqlserver 删除约束
declare @name varchar(50)
select @name =b.name from sysobjects b join syscolumns a on b.id = a.cdefault
where a.id = OBJECT_ID('ewm_lybzrk')
and a.name ='hwh'
23、windows 指定jdk启动项目
set JAVA_HOME=C:\Program Files\Java\jdk1.8.0_31
set CLASSPATH=.;%JAVA_HOME%\lib\dt.jar;%JAVA_HOMe%\lib\tools.jar;
set Path=%JAVA_HOME%\bin;
java -jar plc-xz-0.0.1-SNAPSHOT.jar
1、MQ KAFKA Kafka、RabbitMQ、RocketMQ
2、时序数据库 (MYSQL按月分表,先重命名再创建表)redis分页(SortedSet: 主要存储有序集合实现)
对于 90% 以上场景都是写入的时序数据库,B tree 很明显是不合适的。业界主流都是采用 LSM tree 替换 B tree,比如 Hbase, Cassandra 等 nosql。
InfluxDB是一个开源的时序数据库,使用GO语言开发,特别适合用于处理和分析资源监控数据这种时序相关数据。而InfluxDB自带的各种特殊函数如求标准差,随机取样数据,统计数据变化比等,使数据统计和实时分析变得十分方便。有window版本。
已与java连接。3、fLINK
随着这些年大数据的飞速发展,也出现了不少计算的框架(Hadoop、Storm、Spark、Flink)
第一代:Hadoop 承载的 MapReduce
第二代:支持 DAG(有向无环图)框架的计算引擎 Tez 和 Oozie,主要还是批处理任务
第三代:支持 Job 内部的 DAG(有向无环图),以 Spark 为代表
第四代:大数据统一计算引擎,包括流处理、批处理、AI、Machine Learning、图计算等,以 Flink 为代表4、TDengine
TDengine是一款集成了消息队列,数据库,流式计算等功能的物联网大数据平台。该产品不依赖任何开源或第三方软件,拥有完全自主知识产权,具有高性能、高可靠、可伸缩、零管理、简单易学等技术特点。和InfluxDB相比,TDengine是当前时序数据库领域中一匹势头正劲的黑马。早到十分钟晚走十分钟、从清洁开始、从日志开始
没必要草木皆兵、有力有礼有节、有始有终做到底跟到底、我的责任和我的失误、我的奖金5、Elaticsearch,简称为es, es是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据