# 矩阵求导公式总结

Y = A * X --> DY/DX = A'
Y = X * A --> DY/DX = A
Y = A' * X * B --> DY/DX = A * B'
Y = A' * X' * B --> DY/DX = B * A'

1. 矩阵Y对标量x求导：

Y = [y(ij)] --> dY/dx = [dy(ji)/dx]

2. 标量y对列向量X求导：

y = f(x1,x2,..,xn) --> dy/dX =(Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'

3. 行向量Y'对列向量X求导：

dX'/dX = I

d(AX)'/dX = A'

4. 列向量Y对行向量X’求导：

dY/dX' = (dY'/dX)'

5. 向量积对列向量X求导运算法则：

d(UV')/dX = (dU/dX)V' + U(dV'/dX)

d(U'V)/dX = (dU'/dX)V + (dV'/dX)U'

d(X'A)/dX = (dX'/dX)A + (dA/dX)X' = IA + 0X' = A

d(AX)/dX' = (d(X'A')/dX)' = (A')' = A

d(X'AX)/dX = (dX'/dX)AX + (d(AX)'/dX)X = AX + A'X

6. 矩阵Y对列向量X求导：

7. 矩阵积对列向量求导法则：

d(uV)/dX = (du/dX)V + u(dV/dX)

d(UV)/dX = (dU/dX)V + U(dV/dX)

d(X'A)/dX = (dX'/dX)A + X'(dA/dX) = IA + X'0 = A

8. 标量y对矩阵X的导数：

dy/dX = [ Dy/Dx(ij) ]

y = U'XV = ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] = UV'

y = U'X'XU 则 dy/dX = 2XUU'

y = (XU-V)'(XU-V) 则 dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' -2VU' + 0 = 2(XU-V)U'

9. 矩阵Y对矩阵X的导数：

10.乘积的导数

d(f*g)/dx=(df'/dx)g+(dg/dx)f'

d(x'Ax)=(d(x'')/dx)Ax+(d(Ax)/dx)(x'')=Ax+A'x  （注意：''是表示两次转置）

06-08 17万+

04-08
10-14 5万+
05-01 2289
04-22