numpy数组操作

本文详细介绍了numpy库在Python中的数组操作,包括生成等差数列、创建多维数组、矩阵乘法、算术运算、聚合函数、数组切片与遍历、条件语句生成新数组等。通过实例演示了各种操作方法及其效果,帮助读者掌握numpy的基本使用技巧。
摘要由CSDN通过智能技术生成

import numpy as np

0. 生成等差数列

np.arange(0, 10, 1, dtype=int) =  [0 1 2 3 4 5 6 7 8 9]  #大于等于0, 小于10,步长为1的等差数列

np.arange(10) = [0 1 2 3 4 5 6 7 8 9]   #默认大于等于0, 小于10,步长为1的等差数列

1. 生成多维数组,并批量初始化元素

1.1生成2*3初始值为0的数组

np.zeros((2, 3), dtype=int) = [[0 0 0]
          [0 0 0]]

1.2生成2*3*2初始值为1的数组

np.ones((2, 3, 2), dtype=int) =  [[[1 1]
    [1 1]
    [1 1]]

  [[1 1]
   [1 1]
   [1 1]]]

2. 初始化两个二维数组

a = np.array([[1, 2], [1, 1]])
b = np.array([[1, 2], [1, 1]])

print结果:

a= [[1 2]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值