- 博客(213)
- 资源 (2)
- 收藏
- 关注
原创 基于 Delphi 与 ICS 的 Mosquitto Broker 重构实现:架构创新与技术比较分析
Mosquitto 是目前 MQTT 协议最广泛使用的开源 Broker 实现,采用 C 语言编写,具备高性能与跨平台特性。然而,其原生实现存在代码复杂、异步模型依赖 POSIX API、在 Windows 上调试维护困难等局限。本文介绍了将 Mosquitto Broker 全面重写为 Delphi 版本 的工作,核心基于 ICS(Internet Component Suite)TWSocketServer 实现高并发网络框架,并结合 PostgreSQL 持久化 完成数据层替换。通过结构重构与类型映射
2025-10-08 09:56:24
1197
原创 矩阵乘法的几何视角
矩阵乘法本质上是线性变换的数学表达,它将输入向量通过矩阵映射到输出空间。从三个视角理解:1)行点积视角,输出是各行与输入的点积;2)列组合视角,输出是各列的线性组合;3)函数视角,矩阵代表线性映射规则。几何上,矩阵变换对应空间变形(旋转、缩放、剪切等),其行列式决定体积缩放,秩反映维度压缩程度。当m≠p时,矩阵实现升维或降维映射,不可逆时需用最小二乘等方法近似求解。掌握矩阵乘法关键在于理解其作为空间变换的本质。
2026-02-09 15:05:08
282
原创 向量的正交分解和标准正交基
本文系统阐述了向量的正交分解原理及其应用。首先定义了正交分解是将向量唯一表示为两个正交向量之和的过程,其中一个属于给定子空间,另一个属于其正交补空间。通过几何图示直观展示了投影分量和平行分量的分解方法,并推导了当基向量为单位向量时的简化公式。进一步探讨了标准正交基的性质,说明在正交规范基下向量分解可简化为坐标投影的线性组合。最后将正交分解原理与Gram-Schmidt正交化过程相联系,揭示了该方法是正交分解的迭代应用。全文通过具体算例和几何图示,清晰展现了正交分解的数学本质及其在线性代数中的重要地位。
2026-02-09 09:06:29
276
原创 Gram-Schmidt 正交化过程简介
Gram-Schmidt正交化过程是一种将线性无关向量组转化为正交向量组的方法。其核心思想是通过逐步投影和减法操作,从每个向量中去除其在已处理向量方向上的分量,从而得到相互正交的新向量组。该过程首先固定第一个向量作为基准,然后依次处理后续向量:对每个新向量计算其在已正交化向量上的投影分量并减去,剩余部分即为与前序向量正交的新向量。最后可对所得正交向量进行单位化,形成标准正交基。这一方法在数值计算中具有重要意义,广泛应用于QR分解、最小二乘等问题,但需注意数值稳定性问题,可采用改进的MGS算法提高精度。
2026-02-07 16:54:36
586
原创 正交投影和正交拒绝
本文介绍了向量正交投影和正交拒绝的概念。正交投影指一个向量在另一个向量方向上的分量,而正交拒绝则是与之垂直的剩余部分。通过图示展示了如何将向量分解为平行分量和垂直分量,并给出数学公式:投影为(b·a)/(b·b)*b,拒绝为a-(b·a)/(b·b)*b。文章还解释了正交拒绝的几何意义、推导过程及其应用,包括Gram-Schmidt正交化和最小二乘法等。正交拒绝表示向量偏离参考方向的程度,在数据分析和几何计算中具有重要作用。
2026-02-06 14:41:45
509
原创 标量投影和向量投影
我先把图里的符号(proj、comp、点积、夹角)逐一对应到几何含义,然后用一个带数字的例子把公式算一遍,最后总结两者区别与常见坑。在的方向上“投影”一个输出是(projection,写作另一个输出是(component/ scalar projection,写作。
2026-02-05 20:18:30
568
原创 欧氏内积(Euclidean Inner Product)
欧氏内积(点积)是向量空间的基本运算,定义为对应分量乘积之和。其几何意义为向量y在x方向上的投影长度乘以x的模长,也可表示为‖x‖‖y‖cosθ。内积具有对称性、正定性和线性特性,可用于计算向量长度、夹角和距离。当x为单位向量时,内积即为y在x方向上的有符号投影长度。内积数值受向量长度和方向共同影响,通过余弦相似度可消除长度干扰,仅衡量方向一致性。正交意味着两向量方向完全无关。柯西-施瓦茨不等式表明内积上界为‖x‖‖y‖。内积在线性代数、几何和机器学习中广泛应用,既是距离计算的基础工具,也是衡量向量相似度的
2026-02-04 17:22:35
683
1
原创 用点积表示“夹角”
把 a 在 b 的方向上做投影。b 的单位方向向量:a 在方向上的标量投影长度是:而点积的几何意义正是“a 在方向上的投影长度”:把 代入:两边乘 ∥b∥:✅ 得证。在欧氏空间中:让长度与点积绑定余弦定理描述距离与角度的关系两者必须一致 ⇒ 就推出。
2026-02-04 11:23:53
477
原创 什么是向量单位化 (vector normalization)
向量单位化与余弦相似度解析 向量单位化是将非零向量缩放成长度为1的单位向量,保持方向不变的过程。通过将向量各分量除以其模长实现,如向量(3,4)单位化为(0.6,0.8)。单位化在机器学习、图形学等领域有重要应用,可消除长度影响,专注方向比较。 余弦相似度通过计算向量夹角余弦值来衡量方向相似性,取值范围[-1,1]。其核心公式为两向量点积除以模长乘积,本质是单位化后的向量点积。这种度量特别适合文本相似性比较,能有效消除长度差异带来的干扰,使语义对比更准确。 单位化与余弦相似度结合使用,能提升算法稳定性,避免
2026-02-03 10:26:46
551
原创 矩阵的行列式是什么
摘要:行列式是方阵的重要标量属性,具有深刻的几何意义。在二维情况下,行列式的绝对值表示矩阵变换对面积的缩放倍数,符号则指示方向是否翻转(正为保持方向,负为镜像)。其计算公式ad-bc可通过几何切割法直观推导:将平行四边形嵌入外接矩形后,减去多余三角形区域面积所得。行列式为零意味着矩阵不可逆,对应几何上的"压扁"现象(如二维降至一维)。这一概念可推广至高维,表示体积或超体积的缩放比例,并广泛应用于矩阵可逆性判断、线性方程组解的分析及坐标变换等领域。
2026-02-02 13:17:24
614
原创 逆矩阵的几何意义
变换:黄色的网格线倾斜,单位圆变成了椭圆。变换:倾斜的网格又变回了正方形,椭圆缩回成圆,原本坐标为的向量找回了自己的归宿。特殊例子:如果是逆时针旋转 90 度,那么就是顺时针旋转 90 度。
2026-01-30 15:05:16
571
原创 什么是逆矩阵
摘要:矩阵的逆矩阵类似于数字的倒数,能够"撤销"原矩阵的乘法操作。只有行列式不为零的方阵才存在逆矩阵,其定义为A×A⁻¹=I(单位矩阵)。对于2×2矩阵有直接求逆公式,而更高阶矩阵通常采用高斯-约旦消元法求解。判断矩阵可逆的条件包括行列式非零、满秩等特性。文章通过具体3×3矩阵示例,详细演示了使用增广矩阵和初等行变换求解逆矩阵的过程,并提供了验证方法。
2026-01-30 12:54:35
779
原创 机器学习基础:欧氏范数的应用
本文从勾股定理出发,解释了机器学习中常见的"||x||"符号(L2范数/欧氏范数)的几何意义。通过二维和三维空间的例子,说明L2范数本质上是向量长度的计算公式,在复数情况下需使用模长平方。文章详细推导了正交矩阵保持向量长度不变的性质,并通过旋转矩阵和反射矩阵的具体实例验证了这一特性。最后指出该性质在图形学、数值计算和量子力学等领域的重要性,强调正交变换不仅能保持向量长度,还能保持角度关系。
2026-01-29 10:05:19
945
原创 什么是“正交矩阵”
正交矩阵是保持向量长度和角度不变的线性变换矩阵,其列向量构成一组正交单位基。它具有三个关键性质:逆矩阵等于转置矩阵、保持内积不变、行列式为±1。正交矩阵在几何上表示纯旋转(行列式+1)或旋转加反射(行列式-1)。实际应用中,正交矩阵广泛用于PCA分析、SVD分解、QR分解、机器学习模型初始化、信号处理及3D图形学等领域。其核心价值在于提供稳定的坐标变换和矩阵分解工具,确保数值计算过程中不改变原始数据的几何结构特性,同时避免误差放大问题。
2026-01-28 16:32:21
936
原创 谈谈行列式展开
行列式的展开,正式称为拉普拉斯展开(Laplace expansion)或余子式展开(cofactor expansion),是计算n阶行列式的一种递归方法。它允许我们将高阶行列式转化为若干低阶行列式的加权和,非常实用,尤其在手算时。对于一个n阶方阵,其行列式 det(A) 可以按任意一行或任意一列展开。按第i行展开其中 是余子式是子式(minor),即删除第i行和第j列后得到的(n-1)阶子矩阵的行列式。按第k列展开(类似):关键是符号项,它决定正负号。
2026-01-28 13:40:09
930
原创 谈谈特征分解(EVD)
本文详细解析了矩阵特征值分解(EVD)的原理与应用。EVD将方阵A分解为A=QΛQ⁻¹形式,其中Q由特征向量构成,Λ为特征值对角矩阵。文章阐述了EVD的几何意义、存在条件(需n个线性无关特征向量)及计算步骤,并比较了其与奇异值分解(SVD)的区别。特别指出实对称矩阵必可对角化且Q⁻¹=Qᵀ。EVD在动力系统、PCA、量子力学等领域有重要应用,可将复杂矩阵运算简化为对角矩阵的幂运算。文中还通过具体3×3矩阵示例演示了完整的EVD计算与验证过程。
2026-01-28 10:24:11
1795
原创 Eckart-Young-Mirsky 定理
摘要:Eckart-Young-Mirsky定理(谱范数版本)指出,矩阵A的最佳秩R逼近由截断SVD实现,其误差等于第R+1个奇异值σ_{R+1}。证明分为两部分:上界通过截断SVD直接得到误差σ_{R+1};下界利用前R+1个右奇异向量张成的子空间,结合秩-零度定理证明任何秩≤R的逼近误差至少为σ_{R+1}。该定理表明截断SVD在谱范数意义下是最优低秩逼近方法。(149字)
2026-01-27 10:58:55
957
原创 svd在图像处理中的应用
在前面几篇文章中,我们谈了SVD的基本原理,从几何角度用二维坐标展示了SVD的拉伸和旋转。现在通过一张具体的图片来看看SVD是如何处理矩阵的。这张图展示的是:把一张当成一个矩阵 AAA,做 SVD 分解后,只保留前 k 个奇异值(以及对应的左右奇异向量),就能得到一张“压缩/降噪后的近似图”。
2026-01-27 09:19:11
1126
原创 矩阵的“内积”和“乘法”
本文通俗易懂地讲解了矩阵乘法和内积的本质关系。矩阵乘法实际上是"行向量"与"列向量"的内积组合,每个结果元素都是对应行和列的点积运算。通过生动比喻(如"打分器")和图示说明,文章揭示了矩阵乘法的几何意义:将输入向量映射为输出向量的线性变换。同时区分了矩阵乘法(产生新矩阵)和矩阵内积(产生标量)的区别,强调矩阵乘法通常不可交换的特性。通过具体计算示例,帮助读者直观理解这一重要数学概念。
2026-01-26 15:45:22
561
原创 可视化奇异值分解
本文通过可视化方法直观展示了奇异值分解(SVD)的数学原理。图1-3分别演示了方阵、高矩阵和宽矩阵的SVD分解过程,揭示了"旋转-缩放-旋转"的核心机制。特别强调了奇异值矩阵Σ对角元素的重要性,以及U、V矩阵的正交性质。图4对比了完整SVD与截断SVD的区别,说明SVD在数据压缩和降噪中的优化特性。文章还详细解释了热力图中色标的解读方法,帮助读者理解矩阵元素的数值分布。通过5个关键点,系统阐述了SVD描述空间变换、确定主方向、与特征分解的关系等核心概念。
2026-01-26 10:48:02
765
原创 什么是半正定 (PSD) 矩阵
PSD(半正定)矩阵是线性代数中的重要概念,其核心特性是对于任意非零向量x,二次型xᵀAx≥0。通俗理解,PSD矩阵就像一个"能量泵",输出的能量值永远不会为负。判断PSD矩阵的方法包括:所有特征值非负、可进行Cholesky分解或主子式行列式非负。PSD与PD(正定)的区别在于前者允许某些方向的"能量"为零。PSD矩阵在机器学习中广泛应用,如协方差矩阵、Gram矩阵和核矩阵都必须是PSD的。直观来看,PSD对应的二次函数图像像一个"碗",某些方向
2026-01-23 13:40:51
833
原创 通俗易懂的Gram矩阵讲解
Gram矩阵是衡量向量间相似度的数学工具,通过计算向量内积形成对称矩阵。对角线元素表示向量自身强度,非对角线元素反映向量间的相似程度。其核心性质包括对称性、半正定性及秩不超过向量维度,广泛应用于线性回归、核方法和PCA等机器学习任务。计算时只需将向量矩阵转置后相乘,结果矩阵的每个元素即
2026-01-23 10:55:42
1299
原创 SVD终极探奥
摘要:SVD分解中,U称为左奇异向量,V称为右奇异向量,源于它们在矩阵A的左右位置以及所属空间。右奇异向量V属于输入空间(n维),是A^TA的特征向量;左奇异向量U属于输出空间(m维),是AA^T的特征向量。名称中的"左右"反映空间归属而非计算顺序。旋转操作的意义在于将复杂变形分解为沿正交轴的纯拉伸,使矩阵变换可解释、可计算。奇异值反映拉伸强度,其平方对应特征值,零奇异值方向体现矩阵的不可逆性。SVD通过旋转对齐关键方向,实现数据降维和特征提取。
2026-01-22 10:38:57
729
原创 SVD的几何方式解释
SVD(奇异值分解)的几何意义可以形象地描述为三步操作:1)旋转输入空间的单位圆使其正交方向v1,v2对齐标准轴;2)沿坐标轴进行不同比例的拉伸(σ1,σ2),形成椭圆;3)将椭圆旋转到输出空间的方向u1,u2。图中直观展示了SVD的核心思想:矩阵变换本质上是旋转、拉伸、再旋转的过程,其中奇异值σ1代表最大放大倍数,v1是最易被放大的输入方向,u1是最大拉伸后的输出方向。这种分解揭示了矩阵变换在输入/输出空间中最关键的方向及其重要性。
2026-01-21 09:23:48
863
原创 SVD:如何把一个矩阵拆解成三个部分?
假设“M矩阵”指的是一个任意矩阵,奇异值分解(SVD)就是一种方法,能把这个矩阵“拆解”成三个更简单的矩阵:U、Σ(读作Sigma)和V^T。通俗地说,这就像把一张复杂照片拆成“框架”(U)、“重要程度列表”(Σ)和“图案模板”(V^T)。最终,你可以用这三个部分重新拼回原矩阵,但过程中能看到哪些部分是最关键的,能帮你压缩数据或找出隐藏模式。为什么叫“拆解”?因为SVD不是随意切分,而是基于数学原理,让分解后的部分捕捉矩阵的“本质”。它适用于任何形状的矩阵(不一定是方形的),超级实用。比如,在图像处理中,它
2026-01-20 09:26:40
674
原创 什么是奇异值分解(SVD)?
摘要:奇异值分解(SVD)是一种将矩阵分解为"旋转+缩放+旋转"组合的数学工具,它能有效提取数据的主要特征。SVD将任意矩阵A分解为UΣV^T,其中U和V是正交矩阵,Σ包含按重要性排序的奇异值。几何上,SVD可以理解为找到输入空间中最易被拉伸的方向及其在输出空间中的对应方向。SVD在数据降维、图像压缩、去噪和推荐系统中有广泛应用,通过保留前几个大奇异值,能实现最优的低秩近似,同时去除噪声和冗余信息。
2026-01-19 14:42:45
691
原创 高斯消元法简介
高斯消元法(Gaussian Elimination)是一种经典的数学方法,主要用来求解线性方程组。它就像是“逐步简化”一个复杂的方程系统,通过一些简单的行操作,把它变成一个容易计算的上三角形矩阵,然后从下往上求出每个变量的值。这个方法是由数学家卡尔·弗里德里希·高斯发明的,但其实更早的版本在中国古代的《九章算术》里就有类似思路。它特别适合手算或计算机编程处理多变量方程。简单来说,想象你有几个方程,比如买苹果和橙子的总价问题,高斯消元法能帮你一步步消掉未知数,直到得出答案。它不复杂,只要掌握三个基本操作:交
2026-01-19 10:27:26
834
原创 矩阵的“秩”是什么?
矩阵就是一个矩形的数字阵列,比如一个2x2的矩阵长这样:[ 1 0 ][ 0 1 ]这像一个表格,有行(横的)和列(竖的)。矩阵常用来描述“变换”,比如把一个平面上的点拉伸、旋转或挤压。做高斯消元后,出现的“楼梯拐点”(主元)有几个,秩就是几。这张图里主元是2 和 1→ 2个主元 → rank=2秩 = 最大线性无关的列数也等于最大线性无关的行数(神奇但是真的:行秩=列秩)✅秩(rank)是什么?矩阵里独立信息的数量不重复的方向数高斯消元后非零行的数量主元(pivot)的数量。
2026-01-19 09:56:54
820
原创 矩阵方程求解
摘要:本文通过图解方式讲解如何将二元一次方程组转化为矩阵方程Ax=b,并利用逆矩阵求解未知数。具体步骤包括:1)整理系数矩阵A和常数向量b;2)通过公式计算2×2矩阵的逆矩阵A⁻¹;3)用x=A⁻¹b求解未知向量x。文中详细演示了逆矩阵的计算过程,并通过验算验证了解的正确性。最终说明逆矩阵实现了从结果b反推原因x的映射关系,展示了矩阵方法解方程组的简洁高效。
2026-01-16 16:27:48
887
原创 logit 的反解
定义自然对数:这句话的含义就是:ln把 x 变成 y,而能把 y 再变回 x。既然 y=ln(x),那就对两边取指数(以 e 为底):但根据上面的等价定义,左边就等于 x,所以:并且必须强调:因为 ln(x) 只对 x>0 定义,所以结论也要求 x>0。
2026-01-16 14:01:53
379
原创 逻辑回归的对数损失
摘要:对数是指数的逆运算,用于求解"b的多少次方等于x"。在机器学习中,对数损失(LogLoss)是逻辑回归的核心损失函数,其特点是:1)对预测概率与真实标签的差异进行惩罚;2)对"自信的错误预测"给予更严厉惩罚;3)梯度计算可简化为"预测值-真实值",使训练更高效。该损失函数通过将乘法增长转换为加法增长,有效处理数据跨度大的问题,并具有直观的统计解释(最大似然估计)。
2026-01-15 14:55:17
1401
原创 支持向量机 (SVM) 通俗解读
支持向量机(SVM)是一种经典的机器学习分类算法,其核心思想是找到最佳"分界线"(超平面),使不同类别的数据点尽可能分开。SVM通过最大化"裕度"(margin)来提高分类的稳健性,仅依赖最靠近分界线的"支持向量"来确定边界位置。当数据线性不可分时,SVM可通过核技巧映射到高维空间进行分类,或采用软间隔允许少量误分类。该算法具有对噪声不敏感、泛化能力强的优点,但在大数据集上训练较慢,且参数调优较复杂。SVM特别适合特征区分度明显的中小规模数据集,在
2026-01-14 14:10:32
903
原创 最近邻算法 (kNN) 通俗讲解
摘要:k-最近邻(kNN)是一种基于距离的监督学习算法,通过查找新样本最近的k个邻居进行多数投票分类或平均值回归。其核心思想是"物以类聚",算法无需训练,直接存储所有数据点。关键参数k的选择需权衡灵敏度和稳健性:k小易受噪声影响,k大则忽略局部特征。算法优势是简单直观,但计算成本高且对数据尺度敏感,需进行特征归一化。实际应用中通常选择奇数k值,通过验证集选择最优参数。
2026-01-14 10:54:58
963
原创 谈谈麦克劳林级数(Maclaurin series)
麦克劳林级数是泰勒级数在x=0处的特例,用多项式逼近函数在原点附近的形状。它通过匹配函数在0点的各阶导数值构建多项式,包含阶乘项以抵消导数运算带来的系数增长。以sin(x)为例,其导数具有周期性,麦克劳林展开后仅保留奇次幂项,呈现交替符号特征;cos(x)则保留偶次幂项。这类展开在x=0附近尤其精确,常用于小角度近似计算。但需注意收敛区间,如几何级数要求|x|<1。实际应用中,根据精度需求截取有限项即可获得良好近似,离原点越近逼近效果越好。
2026-01-13 15:02:30
868
原创 谈谈泰勒公式
泰勒公式是一种用多项式逼近复杂函数的数学工具。它将函数在某点附近展开为多项式之和,阶数越高逼近越精确。以sin(x)在x=0处展开为例,一阶近似为直线y=x,三阶加入弯曲信息y=x-x³/6,五阶、七阶逐步逼近真实曲线。这种近似在展开点附近效果最佳,离点越远误差越大。泰勒展开的实用价值在于:用简单多项式运算代替复杂函数计算,广泛应用于工程、物理等领域。其核心思想是通过函数的各阶导数信息,构建局部最优的多项式近似。
2026-01-13 10:48:53
1284
原创 有理数域上的扩域
这张图是在讲 有理数域 上的“扩域(field extension)”以及扩张次数(degree),核心主角是三种域::把 加进来得到的最小域:把 加进来得到的最小域:把它们的“和” 加进来得到的最小域(扩张次数是 n)可以通俗理解成:因为任何元素都能写成只要基底 两个就够了,所以(它的最小多项式是 ,次数 2。)令 ,有 。所以更高次幂都能“压回去”: 就能表示一切因此(最小多项式是 ,次数 3。)右边是 。中间上方是 ,中间下方是 。左边是 。图想表达两件事:把两者都加入得到的复合域(也
2026-01-12 17:17:44
840
原创 七年级数学——方程中的“去括号与去分母”
摘要:本文系统讲解一元一次方程的两种核心化简方法——去括号和去分母。去括号运用分配律和符号规则展开表达式,去分母通过两边同乘最小公倍数消去分母。文章详细说明操作步骤(先分母后括号)、常见错误(符号错误、漏乘项)及检验方法,并配以典型应用题示例(用电量、捐书、工程问题)。重点强调标准解题流程:找LCM→去分母→去括号→移项→合并→系数化1→验算,帮助建立规范的解题思路。
2026-01-12 13:58:04
885
原创 谈谈矩阵转置
矩阵转置是将矩阵的行列互换的操作,在线性代数和机器学习中具有重要作用。转置后的矩阵维度由m×n变为n×m,元素位置按主对角线翻转。关键性质包括:(AB)ᵀ=BᵀAᵀ,转置两次还原矩阵。在机器学习中,转置常用于将行向量转为列向量、矩阵乘法维度对齐,以及构建对称矩阵。特别地,XᵀX结构在最小二乘法和逻辑回归中频繁出现,用于特征相关性分析和参数更新。反向传播中也大量使用转置来实现梯度维度的转换和参数更新。转置操作是矩阵运算中实现维度匹配和信息传递的核心工具。
2026-01-12 10:57:44
1178
原创 初中数学——无限循环小数化分数
如果循环节是 n 位,比如那么直接记住结论:1 位循环:分母 92 位循环:分母 993 位循环:分母 999例如图里最后让你试的:。
2026-01-12 08:47:31
213
原创 逻辑回归中的条件概率
本文系统解析了逻辑回归中的条件概率表达式p(y=1|x),通过5个层次逐步深入:1)符号含义,解释x(特征)、y(标签)和条件概率的定义;2)与无条件概率p(y=1)的区别,强调条件概率的个性化特性;3)逻辑回归计算原理,说明通过线性组合z=w^T x+b和Sigmoid函数转换;4)深入剖析z的数学本质,揭示其作为对数几率(logit)的统计学意义;5)通过具体数值示例,展示z与概率、几率之间的换算关系,阐明模型可解释性。全文采用生活化比喻和数值示例,将复杂数学概念转化为直观理解。
2026-01-09 16:51:29
1099
Parallel Programming with OmniThreadLib
2018-05-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅