Scaled Yolov4
一、简介
本文提出了一种通过修改网络的深度,宽度,分辨率和网络结构的网络缩放方法。YOLOv4-large模型达到了当前state-of-the-art结果,在MS COCO 数据集上,Tesla V100上实现了55.4%AP(73.3%AP50)和15FPS,并且在使用TTA( test time augmentation)方法后YOLOv4达到了55.8%AP(73.2%AP50)。是当前已提出的方法中在MS COCO数据集上精度最高的模型。YOLOv4-tiny在RTX2080Ti上达到了22.0% AP (42.0% AP50),大约443FPS,在使用了TensorRT,batch size=4和FP16混合精度训练方法后,YOLOv4-tiny达到了1774FPS.
二、本文贡献
- 为小模型设计了一个功能强大的模型缩放方法,可以系统地平衡浅层CNN的计算成本和内存带宽。
- 为缩放一个大的目标检测器设计了一个简单而且有效的策略。
- 分析所有模型缩放因子之间的关系,并且基于最有利的部分进行模型缩放。
- 实验已经证实,FPN结构本质上是一劳永逸的结构。
- 使用上面的方法构建了YOLOv4-large和YOLOv4-tiny。
三、模型缩放原理
3.1模型缩放的一般原理
在设计高效的模型缩放方法时,我们主要的原理是当扩大/缩小规模时,我们要增加/减少 更低/更高的定量成本,则越好。接下来我们会去展示和分析几种不同的CNN模型,来理解