Scaled Yolov4论文解读

Scaled YOLOv4提出了一种网络缩放方法,通过调整模型的深度、宽度、分辨率和结构,实现从Tiny到Large模型的高效缩放。YOLOv4-large在MS COCO上达到55.4%AP,而YOLOv4-tiny在RTX2080Ti上实现22.0%AP。文章详细探讨了模型缩放原理,包括CSP结构在ResNet、ResNeXt和Darknet中的应用,以及针对Low-End设备和高端GPU的模型设计策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Scaled Yolov4

一、简介

本文提出了一种通过修改网络的深度,宽度,分辨率和网络结构的网络缩放方法。YOLOv4-large模型达到了当前state-of-the-art结果,在MS COCO 数据集上,Tesla V100上实现了55.4%AP(73.3%AP50)和15FPS,并且在使用TTA( test time augmentation)方法后YOLOv4达到了55.8%AP(73.2%AP50)。是当前已提出的方法中在MS COCO数据集上精度最高的模型。YOLOv4-tiny在RTX2080Ti上达到了22.0% AP (42.0% AP50),大约443FPS,在使用了TensorRT,batch size=4和FP16混合精度训练方法后,YOLOv4-tiny达到了1774FPS.

二、本文贡献

  1. 为小模型设计了一个功能强大的模型缩放方法,可以系统地平衡浅层CNN的计算成本和内存带宽。
  2. 为缩放一个大的目标检测器设计了一个简单而且有效的策略。
  3. 分析所有模型缩放因子之间的关系,并且基于最有利的部分进行模型缩放。
  4. 实验已经证实,FPN结构本质上是一劳永逸的结构。
  5. 使用上面的方法构建了YOLOv4-large和YOLOv4-tiny。

三、模型缩放原理

3.1模型缩放的一般原理

在设计高效的模型缩放方法时,我们主要的原理是当扩大/缩小规模时,我们要增加/减少 更低/更高的定量成本,则越好。接下来我们会去展示和分析几种不同的CNN模型,来理解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值