1 Hadoop
压缩配置
1.1 MR
支持的压缩编码
1.2 压缩参数配置
要在
Hadoop
中启用压缩,可以配置如下参数(
mapred-site.xml
文件中):
2 开启 Map 输出阶段压缩(MR 引擎)
开启
map
输出阶段压缩可以减少
job
中
map
和
Reduce task
间数据传输量。具体配置如
下:
1
)案例实操:
(1)开启
hive
中间传输数据压缩功能
hive (default)>set hive.exec.compress.intermediate=true;
(2)开启
mapreduce
中
map
输出压缩功能
hive (default)>set mapreduce.map.output.compress=true;
(3)设置
mapreduce
中
map
输出数据的压缩方式
hive (default)>set mapreduce.map.output.compress.codec=
org.apache.hadoop.io.compress.SnappyCodec;
(4)执行查询语句
hive (default)> select count(ename) name from emp;
4
文件存储格式
Hive
支持的存储数据的格式主要有:
TEXTFILE
、
SEQUENCEFILE
、
ORC
、
PARQUET
。
4.1
列式存储和行式存储
1)行存储的特点
查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列
的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度
更快。
2
)列存储的特点
因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的
数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算
法。
TEXTFILE
和
SEQUENCEFILE
的存储格式都是基于行存储的;
ORC
和
PARQUET
是基于列式存储的。
4.2 TextFile
格式
默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合
Gzip
、
Bzip2
使用,
但使用
Gzip
这种方式,
hive
不会对数据进行切分,从而无法对数据进行并行操作。
4.3 Orc
格式
Orc (Optimized Row Columnar)
是
Hive 0.11
版里引入的新的存储格式。
如下图所示可以看到每个
Orc
文件由
1
个或多个
stripe
组成,每个
stripe
一般为
HDFS
的块大小,每一个
stripe
包含多条记录,这些记录按照列进行独立存储,对应到
Parquet
中的
row group
的概念。每个
Stripe
里有三部分组成,分别是
Index Data
,
Row Data
,
Stripe
Footer
:
1
)
Index Data
:一个轻量级的
index
,默认是
每隔
1W
行做一个索引
。这里做的索引应该
只是记录某行的各字段在
Row Data
中的
offset
。
2
)
Row Data
:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个
列进行了编码,分成多个
Stream
来存储。
3
)
Stripe Footer
:存的是各个
Stream
的类型,长度等信息。
每个文件有一个
File Footer
,这里面存的是每个
Stripe
的行数,每个
Column
的数据类
型信息等;每个文件的尾部是一个
PostScript
,这里面记录了整个文件的压缩类型以及
FileFooter
的长度信息等。在读取文件时,会
seek
到文件尾部读
PostScript
,从里面解析到
File Footer
长度,再读
FileFooter
,从里面解析到各个
Stripe
信息,再读各个
Stripe
,即从后
往前读
4.4 Parquet
格式
Parquet
文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的
数据和元数据,
因此
Parquet
格式文件是自解析的。
(1)行组
(Row Group)
:每一个行组包含一定的行数,在一个
HDFS
文件中至少存储一
个行组,类似于
orc
的
stripe
的概念。
(2)列块
(Column Chunk)
:在一个行组中每一列保存在一个列块中,行组中的所有列连
续的存储在这个行组文件中。一个列块中的值都是相同类型的,不同的列块可能使用不同的
算法进行压缩。
(3)页
(Page)
:每一个列块划分为多个页,一个页是最小的编码的单位,在同一个列块
的不同页可能使用不同的编码方式。
通常情况下,在存储
Parquet
数据的时候会按照
Block
大小设置行组的大小,由于一般
情况下每一个
Mapper
任务处理数据的最小单位是一个
Block
,这样可以把
每一个行组由一
个
Mapper
任务处理,增大任务执行并行度
。
Parquet
文件的格式。
上图展示了一个
Parquet
文件的内容,一个文件中可以存储多个行组,文件的首位都是
该文件的
Magic Code
,用于校验它是否是一个
Parquet
文件,
Footer length
记录了文件元数
据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行
组的元数据信息和该文件存储数据的
Schema
信息。除了文件中每一个行组的元数据,每一
页的开始都会存储该页的元数据,在
Parquet
中,有三种类型的页:
数据页、字典页和索引
页
。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最
多包含一个字典页,索引页用来存储当前行组下该列的索引,目前
Parquet
中还不支持索引
页。