Hive压缩和存储

1 Hadoop 压缩配置
1.1 MR 支持的压缩编码

 

 1.2 压缩参数配置

要在 Hadoop 中启用压缩,可以配置如下参数( mapred-site.xml 文件中):

 2 开启 Map 输出阶段压缩(MR 引擎)

开启 map 输出阶段压缩可以减少 job map Reduce task 间数据传输量。具体配置如
下:
1 )案例实操:
(1)开启 hive 中间传输数据压缩功能
hive (default)>set hive.exec.compress.intermediate=true;
(2)开启 mapreduce map 输出压缩功能
hive (default)>set mapreduce.map.output.compress=true;
(3)设置 mapreduce map 输出数据的压缩方式
hive (default)>set mapreduce.map.output.compress.codec=
org.apache.hadoop.io.compress.SnappyCodec;
(4)执行查询语句
hive (default)> select count(ename) name from emp;
4 文件存储格式
Hive 支持的存储数据的格式主要有: TEXTFILE SEQUENCEFILE ORC PARQUET
4.1 列式存储和行式存储

 1)行存储的特点

查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列
的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度
更快。
2 )列存储的特点
因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的
数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算
法。
TEXTFILE SEQUENCEFILE 的存储格式都是基于行存储的;
ORC PARQUET 是基于列式存储的。
4.2 TextFile 格式
默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合 Gzip Bzip2 使用,
但使用 Gzip 这种方式, hive 不会对数据进行切分,从而无法对数据进行并行操作。
4.3 Orc 格式
Orc (Optimized Row Columnar) Hive 0.11 版里引入的新的存储格式。
如下图所示可以看到每个 Orc 文件由 1 个或多个 stripe 组成,每个 stripe 一般为 HDFS
的块大小,每一个 stripe 包含多条记录,这些记录按照列进行独立存储,对应到 Parquet
中的 row group 的概念。每个 Stripe 里有三部分组成,分别是 Index Data Row Data Stripe
Footer

 

1 Index Data :一个轻量级的 index ,默认是 每隔 1W 行做一个索引 。这里做的索引应该
只是记录某行的各字段在 Row Data 中的 offset
2 Row Data :存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个
列进行了编码,分成多个 Stream 来存储。
3 Stripe Footer :存的是各个 Stream 的类型,长度等信息。
每个文件有一个 File Footer ,这里面存的是每个 Stripe 的行数,每个 Column 的数据类
型信息等;每个文件的尾部是一个 PostScript ,这里面记录了整个文件的压缩类型以及
FileFooter 的长度信息等。在读取文件时,会 seek 到文件尾部读 PostScript ,从里面解析到
File Footer 长度,再读 FileFooter ,从里面解析到各个 Stripe 信息,再读各个 Stripe ,即从后
往前读
4.4 Parquet 格式
Parquet 文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的
数据和元数据, 因此 Parquet 格式文件是自解析的。
(1)行组 (Row Group) :每一个行组包含一定的行数,在一个 HDFS 文件中至少存储一
个行组,类似于 orc stripe 的概念。
(2)列块 (Column Chunk) :在一个行组中每一列保存在一个列块中,行组中的所有列连
续的存储在这个行组文件中。一个列块中的值都是相同类型的,不同的列块可能使用不同的
算法进行压缩。
(3)页 (Page) :每一个列块划分为多个页,一个页是最小的编码的单位,在同一个列块
的不同页可能使用不同的编码方式。
通常情况下,在存储 Parquet 数据的时候会按照 Block 大小设置行组的大小,由于一般
情况下每一个 Mapper 任务处理数据的最小单位是一个 Block ,这样可以把 每一个行组由一
Mapper 任务处理,增大任务执行并行度 Parquet 文件的格式。

 

上图展示了一个 Parquet 文件的内容,一个文件中可以存储多个行组,文件的首位都是
该文件的 Magic Code ,用于校验它是否是一个 Parquet 文件, Footer length 记录了文件元数
据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行
组的元数据信息和该文件存储数据的 Schema 信息。除了文件中每一个行组的元数据,每一
页的开始都会存储该页的元数据,在 Parquet 中,有三种类型的页: 数据页、字典页和索引
。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最
多包含一个字典页,索引页用来存储当前行组下该列的索引,目前 Parquet 中还不支持索引
页。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据开发工程师-宋权

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值