快速排序


快速排序

开始看了最简单的冒泡排序,看的还行,后来又看看选择排序,也还行,后来想想,还是看看面试最多的快速排序吧,结果越看越蒙,无奈回家,吃晚饭继续看,终于找到一篇好的文章,才看懂。快速排序确实不容易理解啊。

 

快速排序(quicksort)— O( nlog n) 期望时间,O( n^2) 最坏情况; 对于大的、乱数列表一般相信是最快的已知排序。

 

这个还有动画演示,不错啊。

http://student.zjzk.cn/course_ware/data_structure/web/paixu/paixu8.3.2.2.htm

http://blog.csdn.net/wangkuifeng0118/article/details/7286332

快速排序是对冒泡排序的一种改进。它的基本思想是:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都大,比另外一部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。最坏情况的时间复杂度为O(n2),最好情况时间复杂度为O(nlog2n)。

假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。

一趟快速排序的算法是:

1)设置两个变量I、J,排序开始的时候I:=1,J:=N;

2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1];

3)从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;

4)从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;

5)重复第3、4步,直到I=J;

例如:待排序的数组A的值分别是:(初始关键数据X:=49)

A[1] A[2] A[3] A[4] A[5] A[6] A[7]:

49 38 65 97 76 13 27

进行第一次交换后: 27 38 65 97 76 13 49

( 按照算法的第三步从后面开始找)

进行第二次交换后: 27 38 49 97 76 13 65

( 按照算法的第四步从前面开始找>X的值,65>49,两者交换,此时I:=3 )

进行第三次交换后: 27 38 13 97 76 49 65

( 按照算法的第五步将又一次执行算法的第三步从后开始找)

进行第四次交换后: 27 38 13 49 76 97 65

( 按照算法的第四步从前面开始找大于X的值,97>49,两者交换,此时J:=4 )

此时再执行第三步的时候就发现I=J,从而结束一躺快速排序,那么经过一躺快速排序之后的结果是:27 38 13 49 76 97 65,即所以大于49的数全部在49的后面,所以小于49的数全部在49的前面。

快速排序就是递归调用此过程——在以49为中点分割这个数据序列,分别对前面一部分和后面一部分进行类似的快速排序,从而完成全部数据序列的快速排序,最后把此数据序列变成一个有序的序列,根据这种思想对于上述数组A的快速排序的全过程如图6所示:

初始状态 {49 38 65 97 76 13 27}

进行一次快速排序之后划分为 {27 38 13} 49 {76 97 65}

分别对前后两部分进行快速排序 {13} 27 {38}

结束 结束 {49 65} 76 {97}

49 {65} 结束

结束

图6 快速排序全过程

1)、设有N(假设N=10)个数,存放在S数组中;

2)、在S[1。。N]中任取一个元素作为比较基准,例如取T=S[1],起目的就是在定出T应在排序结果中的位置K,这个K的位置在:S[1。。K-1]<=S[K]<=S[K+1..N],即在S[K]以前的数都小于S[K],在S[K]以后的数都大于S[K];

3)、利用分治思想(即大化小的策略)可进一步对S[1。。K-1]和S[K+1。。N]两组数据再进行快速排序直到分组对象只有一个数据为止。

如具体数据如下,那么第一躺快速排序的过程是:

数组下标: 1 2 3 4 5 6 7 8 9 10

45 36 18 53 72 30 48 93 15 36

I J

(1) 36 36 18 53 72 30 48 93 15 45

(2) 36 36 18 45 72 30 48 93 15 53

(3) 36 36 18 15 72 30 48 93 45 53

(4) 36 36 18 15 45 30 48 93 72 53

(5) 36 36 18 15 30 45 48 93 72 53

通过一躺排序将45放到应该放的位置K,这里K=6,那么再对S[1。。5]和S[6。。10]分别进行快速排序。

public class SortQuite{

public static void main(String args []){

int [] arr = {49,38,65,97,76,13,27};

quickSort(arr,0,6);

for(int i = 0;i < arr.length;i++)
System.out.print(" "+arr[i]);
}

/**

* 交换指定数组a的两个变量的值

* @param a 数组应用

* @param i 数组下标

* @param j 数组下标

*/

public static void swap(int a[], int i, int j) {


if(i == j) return;


int tmp = a[i];


a[i] = a[j];


a[j] = tmp;


}


/**

* 

* @param array 待排序数组

* @param low 数组下标下界

* @param high 数组下标上界

* @return pivot

*/

public static int partition(int array[], int low, int high) {

//当前位置为第一个元素所在位置

int p_pos = low;

//采用第一个元素为轴

int pivot = array[p_pos];


for (int i = low + 1; i <= high; i++) {


if (array[i] < pivot) {


p_pos++;


swap(array, p_pos, i);


}


}


swap(array, low, p_pos);


return p_pos;


}

/**

* 快速排序实现

* @param array

* @param low

* @param high

*/

public static void quickSort(int array[], int low, int high) {


if (low < high) {


int pivot = partition(array, low, high);


quickSort(array, low, pivot - 1);


quickSort(array, pivot + 1, high);


}


}



}

 





 

第二种实现方式:

public int getMiddle(Integer[] list, int low, int high) {
		int tmp = list[low];    //数组的第一个作为中轴
		while (low < high) {
			while (low < high && list[high] > tmp) {
				high--;
			}
			list[low] = list[high];   //比中轴小的记录移到低端
			while (low < high && list[low] < tmp) {
				low++;
			}
			list[high] = list[low];   //比中轴大的记录移到高端
		}
		list[low] = tmp;              //中轴记录到尾
		return low;                   //返回中轴的位置
	}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值