努力的老周
码龄15年
  • 1,865,329
    被访问
  • 534
    原创
  • 757
    排名
  • 904
    粉丝
  • 55
    铁粉
关注
提问 私信

个人简介:浙大自动化本科。 浙大计算机应用研究生。 澳门大学计算数学博士。 一个老码农,中年大叔。打过工,做过老板。 现有神兽一枚,努力培养神兽中。

  • 加入CSDN时间: 2007-03-20
博客简介:

努力中的老周的专栏

博客描述:
一个不断努力的程序猿
查看详细资料
  • 7
    领奖
    总分 3,388 当月 0
个人成就
  • 获得1,289次点赞
  • 内容获得342次评论
  • 获得3,161次收藏
创作历程
  • 29篇
    2022年
  • 62篇
    2021年
  • 336篇
    2020年
  • 107篇
    2019年
  • 1篇
    2008年
  • 8篇
    2007年
成就勋章
TA的专栏
  • 算法模板笔记
    付费
    18篇
  • OJ相关
    7篇
  • OJ二次开发
    2篇
  • 数据结构
    2篇
  • 并查集
    7篇
  • OI
    116篇
  • NOI
    8篇
  • 数学
    15篇
  • 基础知识
    6篇
  • 双指针
    3篇
  • 前缀和
    3篇
  • 差分
    3篇
  • 全排列
    1篇
  • 高精度运算
    6篇
  • 排序
    12篇
  • 模拟
    3篇
  • 暴力
  • 递推
    1篇
  • 打表
  • 离散化
    4篇
  • 贪心
  • 查找
    14篇
  • 分治算法
  • 回溯算法
    5篇
  • BFS
    18篇
  • DFS
    13篇
  • 动态规划
    4篇
  • 背包算法
  • OJ题解
    204篇
  • CSP-2020 J2
    4篇
  • LeetCode题解
    28篇
  • AtCoder题解
    94篇
  • CodeForces题解
    5篇
  • USACO题解
    10篇
  • 一本通题解
    12篇
  • 洛谷题解
    17篇
  • AcWing题解
    1篇
  • CSP2019-J2
    3篇
  • 计蒜客题解
    22篇
  • PAT题解
    8篇
  • XJOI题解
    5篇
  • STL
    8篇
  • vector
    1篇
  • list
    1篇
  • priority_queue
    2篇
  • algorithm
    3篇
  • 数值计算
    6篇
  • Julia
    2篇
  • Unix
    24篇
  • Ubuntu
    10篇
  • Debian10
    5篇
  • MBP
    3篇
  • nginx
    3篇
  • Moodle
    7篇
  • PYTHON
    12篇
  • 量化
    2篇
  • TensorFlow
    1篇
  • TensorFlow2学习
    15篇
  • MNIST
    4篇
  • DL with TensorFlow
    7篇
  • 神经网络
    6篇
  • Darknet
    3篇
  • OpenCV
    13篇
  • NCNN
    12篇
  • darknet2ncnn
    2篇
  • CS231N
    4篇
  • AFEPack
    3篇
  • ChPlayer
    1篇
  • Hi3519A
    7篇
  • MSYS2
    4篇
  • VSCode
    8篇
  • GitLab
    4篇
  • NextCloud
    6篇
  • MySQL
    4篇
  • 笔记
    60篇
兴趣领域 设置
  • 人工智能
    opencvtensorflow
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

动态规划 —— 线性DP —— 最长上升子序列(LIS)

对于最长上升子序列问题(LIS),我们有两种解法。第一种。线性DP,时间复杂度为 $O(N^2)$。第二种。维护一个类似单调栈数据,时间复杂度为 $O(NlogN)$。
原创
发布博客 2022.06.03 ·
29 阅读 ·
0 点赞 ·
0 评论

百子菁英某次作业

本次作业主要还是考察分数计算。在竞赛中分数计算,肯定不会强行通分计算,因为这样计算量太大了,完全无法解决。核心还是耐心观察分数,找出规律,然后开始破题。
原创
发布博客 2022.06.02 ·
41 阅读 ·
0 点赞 ·
0 评论

背包问题(Knapsack Problem)—— 完全背包问题 —— (1)背包价值最大

和 01 背包相比,完全背包问题唯一的区别就是没有限制物品的数量。也就是说,每个物品的数量是无限的。而 01 背包是限制每个物品只有且只有唯一一件。因此,完全背包问题,就是一个简单的动态规划问题。我们可以知道对于第 iii 件物品而言,我们有两个选择:选或者不选。使用动态规划的思想,这样我们可以得出如下的状态转移方程:但是,对于完全背包,由于物品数量无限。我们将使用正序推导。我们现在有如下的样例数据:背包的总重量为 101010,物品有 444 件:这样,开始的时候,动态规划数组 fff 对应数据如下
原创
发布博客 2022.06.02 ·
49 阅读 ·
0 点赞 ·
0 评论

使用 pip 升级所有第三方包

直接一句话升级所有第三方包。
原创
发布博客 2022.06.01 ·
38 阅读 ·
0 点赞 ·
0 评论

背包问题(Knapsack Problem)—— 0/1 背包问题 —— 路径问题

背包路径该问题是在标准 0/1 背包上增加了保存路径功能。一般对此类问题,我们采用逆序的方法,也就是在历史记录中,保存父亲是谁。通过保存一个二维 path 数组,第一维表示物品个数,第二维表示背包重量。在完成 0/1 背包的过程中,保存历史即可。样例数据分析下面我们对如下输入数据进行分析10 52 62 36 55 44 6W=10W=10W=10,表示背包总重量为 101010n=5n=5n=5,表示一共有 555 件物品。第 111 件物品 w=2, v=6w=2,
原创
发布博客 2022.05.24 ·
49 阅读 ·
0 点赞 ·
0 评论

背包问题(Knapsack Problem)—— 0/1 背包问题 —— 总价值最大问题

0/1背包问题(0/1 Knapsack Problem)“0/1”的意思是:每个物品只会放入背包零个或者一个。一个物品只能整个放入背包,要不就不放入背包。物品是无法切割的。0/1背包问题的关键点,在于如何有效利用背包剩余重量,找出最好的物品组合方式。0/1背包问题是经典的 NP-complete 问题,无法快速求得精确解,只能折衷求得近似解。然而,当数值范围不大时,可以用动态规划快速求得精确解。让背包里物品总价值最大这也是 0/1 背包问题的最常见问题。我们可以知道对于第 iii 件物品而言,
原创
发布博客 2022.05.23 ·
163 阅读 ·
0 点赞 ·
0 评论

背包问题(Knapsack Problem)—— 序言

背包问题(Knapsack Problem)什么是背包问题将一群物品放入一个背包中,令背包里面的物品价值最高。用数学术语来说,背包问题就是选择一个最理想的物品子集合,在符合重量限制的前提下,求最大的利益。分数背包问题(Fractional Knapsack Problem)分数(Fractional)的意思,就是一个物品可以切下一个部分,只取某个部分放入背包。这样的问题,我们可以指定一个贪心(Greedy)策略:价值与重量的比值最高的物品,优先放进背包。这样的策略,时间复杂度为 O(N)O(N
原创
发布博客 2022.05.23 ·
60 阅读 ·
0 点赞 ·
0 评论

学习线段树(Segment Tree)

Segment Tree 线段树Segment ABCWhat is segment tree 什么是线段树线段树是一种二叉搜索树,什么叫做二叉搜索树,首先满足二叉树,每个结点度小于等于二,即每个结点最多有两颗子树,何为搜索,我们要知道,线段树的每个结点都存储了一个区间,也可以理解成一个线段,而搜索,就是在这些线段上进行搜索操作得到你想要的答案。下图是一个长度为 777 的线段树样子。What can segment tree do线段树是算法竞赛中常用的用来维护 区间信息 的数据结构。线
原创
发布博客 2022.05.16 ·
108 阅读 ·
0 点赞 ·
0 评论

python 验证 tensorflow 是否可用 GPU

显摆一下,8 个 V100 GPU。一通乱杀,感觉 GPU 已经好了。自己都不知道怎么搞好的。$ python3.9Python 3.9.12 (main, Apr 16 2022, 19:31:36)[GCC 7.5.0] on linuxType "help", "copyright", "credits" or "license" for more information.>>> import tensorflow as tfprint>>>>
原创
发布博客 2022.05.09 ·
653 阅读 ·
0 点赞 ·
0 评论

Ubuntu服务器运维日记 —— Failed to initialize NVML: Driver/library version mismatch

服务器配置操作系统:Ubuntu 18.04显卡:nvidia 470问题输入$ nvidia-smiFailed to initialize NVML: Driver/library version mismatch也就是传说中的显卡不匹配问题。吓死宝宝了。解决确定显卡$ cat /proc/driver/nvidia/versionNVRM version: NVIDIA UNIX x86_64 Kernel Module 470.xxx Wed Mar 16 11:24:0
原创
发布博客 2022.05.09 ·
36 阅读 ·
0 点赞 ·
0 评论

从欧几里得到扩展欧几里得到裴蜀定理再到扩展中国剩余定理

欧几里得算法欧几里得算法,又称辗转相除法。用于计算两个整数 a,ba,ba,b 的最大公约数。基本算法思路(来自离散数学)为:设 a=bq+ra=bq+ra=bq+r,其中 a,b,q,ra,b,q,ra,b,q,r都是整数。则 gcd(a,b)=gcd(b,r)\text{gcd}(a,b)=\text{gcd}(b,r)gcd(a,b)=gcd(b,r),即 gcd(a,b)=gcd(b,a%b)\text{gcd}(a,b)=\text{gcd}(b,a\%b)gcd(a,b)=gcd(b,a%
原创
发布博客 2022.05.07 ·
160 阅读 ·
1 点赞 ·
0 评论

IAI 2022年5月丙组 T4 题解

题意给 nnn 个点,每个点坐标为 (xi,yi)(x_i, y_i)(xi​,yi​)。要求我们其中找到两个点,使得这两个点之间的曼哈顿距离最大。暴力求解首先,我们想到一个暴力的算法。LL maxx=0;for (LL i=1; i<=n; i++) { for (LL j=1; j<=n; j++) { if (i==j) { //同一个点 continue; } maxx = max(maxx, abs(x[i]-x[j])+abs(y[i]-y[j]
原创
发布博客 2022.04.30 ·
107 阅读 ·
0 点赞 ·
0 评论

Win10 下 Qt5.13.2+OpenCV4.5.1 Step by Step

先占位一个坑吧。因为项目要使用到实时在线人脸识别,这次想用 OpenCV。简单记录一下前期的准备工作。GitHub地址为 https://github.com/ZHOUYI-UM/OpenCV4.5.1-step-by-step,用来记录自己完整的项目开发细节过程。...
原创
发布博客 2022.04.26 ·
2048 阅读 ·
0 点赞 ·
0 评论

竞赛题目题解链接,尽量持续更新 —— 更新IAI 2022年5月乙组和AcWing第49场周赛

本贴会持续更新上海计算机学会 IAI丙组2022年4月IAI 2022年4月丙组 T4题目链接:https://iai.sh.cn/problem/633知识点:中位数题解链接:https://pastebin.ubuntu.com/p/hKn8N5wpm3/IAI 2022年4月丙组 T5题目链接:https://iai.sh.cn/problem/627知识点:反悔贪心题解链接:https://pastebin.ubuntu.com/p/6gBhDD4KZ6/AtCoderAB
原创
发布博客 2022.04.09 ·
510 阅读 ·
0 点赞 ·
0 评论

Win10搭建WebService

前言因为项目需要使用 WebService,本人也是第一次使用 WebService,属于完全没有经验。多亏万能的以太网。下面对第一次搭建 WebService 服务端写一个简单的总结。开发环境搭建系统环境Win10 + gSoap 2.8.119服务端程序目前使用 VS2019。gSoap 安装下载 gSoapgSoap 只需要直接从网络下载就可以,不需要本地编译,就是下载有些慢。下载地址为:https://sourceforge.net/projects/gsoap2/files/。
原创
发布博客 2022.02.21 ·
537 阅读 ·
0 点赞 ·
0 评论

OI中的超级快读

超级快读使用 getchar() 来读取。但是只能读取数字。代码实现template <typename T>inline T read() { T x = 0, f = 1; char ch = getchar(); while (!isdigit(ch)) { if(ch=='-') { f = -1; ch = getchar(); } } while (
原创
发布博客 2022.02.21 ·
151 阅读 ·
0 点赞 ·
1 评论

HUSTOJ SPJ 示例

什么是 SPJSPJ 是 Special Judge 的意思。什么时候使用 SPJ当题目答案不止一个的时候,我们就必须使用 SPJ。如何使用 SPJ题目中打开 SPJ首先,我们需要在出题的时候,增加 SPJ 选项,如下图所示。题目保存后,就显示有 SPJ,如下图所示。编写 SPJ 程序SPJ 程序,也就是一个标准 C 或者 C++ 程序,根据题目的要求,读取测试文件(*.in),标准输出文件(*.out),用户输出文件(user.out),进行比较。使用带参数输入。SPJ 模板代码
原创
发布博客 2022.02.15 ·
551 阅读 ·
0 点赞 ·
0 评论

ARC135 部分题解

竞赛地址https://atcoder.jp/contests/arc135/tasks。A - Floor, Ceil - Decompositionhttps://atcoder.jp/contests/arc135/tasks/arc135_a。题解数学题。给一个正整数 XXX,f(x)f(x)f(x) 是一通操作后乘积最大值。假设 X−=⌊x2⌋, X+=⌈x2⌉X_-=\lfloor \frac{x}{2} \rfloor,\ X_+=\lceil \frac{x}{2}
原创
发布博客 2022.02.14 ·
218 阅读 ·
0 点赞 ·
0 评论

图论 —— 拓扑排序

拓扑排序基本概念在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:每个顶点出现且只出现一次。若存在一条从顶点 AAA 到顶点 BBB 的路径,那么在序列中顶点 AAA 出现在顶点 BBB 的前面。有向无环图(DAG)才有拓扑排序,非 DAG 图没有拓扑排序一说。例如,下面这个图,它是一个 DAG 图,那么如何写出它的拓扑排序呢?这里说一种比较常用的方法:
原创
发布博客 2022.02.11 ·
185 阅读 ·
0 点赞 ·
0 评论

图论 —— 二分图的最大匹配

基本概念二分图的匹配给定一个二分图 GGG,在 GGG 的一个子图 MMM 中,MMM 的边集 {E}\{E\}{E} 中的任意两条边都不依附于同一个顶点,则称 MMM 是一个匹配。二分图的最大匹配所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。最大匹配分类问题可以分为:没有权值匹配和有权值匹配。其中有权值匹配,又有两类问题:最大匹配和最小匹配。无权值匹配问题有六位教师:张、王、李、赵、孙、周,要安排他们去教六门课程:数学、化学、物理、语文、英语和程序设计。
原创
发布博客 2022.02.08 ·
204 阅读 ·
0 点赞 ·
0 评论
加载更多