基于Redis实现Bloomfilter去重

本文即是用Python,。下面先放代码,最后附上说明。

Python
# encoding=utf-8 import redis from hashlib import md5 class SimpleHash(object): def __init__(self, cap, seed): self.cap = cap self.seed = seed def hash(self, value): ret = 0 for i in range(len(value)): ret += self.seed * ret + ord(value[i]) return (self.cap - 1) & ret class BloomFilter(object): def __init__(self, host='localhost', port=6379, db=0, blockNum=1, key='bloomfilter'): """ :param host: the host of Redis :param port: the port of Redis :param db: witch db in Redis :param blockNum: one blockNum for about 90,000,000; if you have more strings for filtering, increase it. :param key: the key's name in Redis """ self.server = redis.Redis(host=host, port=port, db=db) self.bit_size = 1 << 31 # Redis的String类型最大容量为512M,现使用256M= 2^8 *2^20 字节 = 2^28 * 2^3bit self.seeds = [5, 7, 11, 13, 31, 37, 61] self.key = key self.blockNum = blockNum self.hashfunc = [] for seed in self.seeds: self.hashfunc.append(SimpleHash(self.bit_size, seed)) def isContains(self, str_input): if not str_input: return False m5 = md5() m5.update(str_input) str_input = m5.hexdigest() ret = True name = self.key + str(int(str_input[0:2], 16) % self.blockNum) for f in self.hashfunc: loc = f.hash(str_input) ret = ret & self.server.getbit(name, loc) return ret def insert(self, str_input): m5 = md5() m5.update(str_input) str_input = m5.hexdigest() name = self.key + str(int(str_input[0:2], 16) % self.blockNum) for f in self.hashfunc: loc = f.hash(str_input) self.server.setbit(name, loc, 1) if __name__ == '__main__': """ 第一次运行时会显示 not exists!,之后再运行会显示 exists! """ bf = BloomFilter() if bf.isContains('http://www.baidu.com'): # 判断字符串是否存在 print 'exists!' else: print 'not exists!' bf.insert('http://www.baidu.com')
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# encoding=utf-8
 
import redis
from hashlib import md5
 
 
class SimpleHash ( object ) :
     def __init__ ( self , cap , seed ) :
         self . cap = cap
         self . seed = seed
 
     def hash ( self , value ) :
         ret = 0
         for i in range ( len ( value ) ) :
             ret += self . seed * ret + ord ( value [ i ] )
         return ( self . cap - 1 ) & ret
 
 
class BloomFilter ( object ) :
     def __init__ ( self , host = 'localhost' , port = 6379 , db = 0 , blockNum = 1 , key = 'bloomfilter' ) :
         """
        :param host: the host of Redis
        :param port: the port of Redis
        :param db: witch db in Redis
        :param blockNum: one blockNum for about 90,000,000; if you have more strings for filtering, increase it.
        :param key: the key's name in Redis
        """
         self . server = redis . Redis ( host = host , port = port , db = db )
         self . bit_size = 1 << 31    # Redis的String类型最大容量为512M,现使用256M= 2^8 *2^20 字节 = 2^28 * 2^3bit
         self . seeds = [ 5 , 7 , 11 , 13 , 31 , 37 , 61 ]
         self . key = key
         self . blockNum = blockNum
         self . hashfunc = [ ]
         for seed in self . seeds :
             self . hashfunc . append ( SimpleHash ( self . bit_size , seed ) )
 
     def isContains ( self , str_input ) :
         if not str_input :
             return False
         m5 = md5 ( )
         m5 . update ( str_input )
         str_input = m5 . hexdigest ( )
         ret = True
         name = self . key + str ( int ( str_input [ 0 : 2 ] , 16 ) % self . blockNum )
         for f in self . hashfunc :
             loc = f . hash ( str_input )
             ret = ret & self . server . getbit ( name , loc )
         return ret
 
     def insert ( self , str_input ) :
         m5 = md5 ( )
         m5 . update ( str_input )
         str_input = m5 . hexdigest ( )
         name = self . key + str ( int ( str_input [ 0 : 2 ] , 16 ) % self . blockNum )
         for f in self . hashfunc :
             loc = f . hash ( str_input )
             self . server . setbit ( name , loc , 1 )
 
 
if __name__ == '__main__' :
""" 第一次运行时会显示 not exists!,之后再运行会显示 exists! """
     bf = BloomFilter ( )
     if bf . isContains ( 'http://www.baidu.com' ) :    # 判断字符串是否存在
         print 'exists!'
     else :
         print 'not exists!'
         bf . insert ( 'http://www.baidu.com' )
 

Bloomfilter算法如何使用位去重,这个百度上有很多解释。简单点说就是有几个seeds,现在申请一段内存空间,一个seed可以和字符串哈希映射到这段内存上的一个位,几个位都为1即表示该字符串已经存在。插入的时候也是,将映射出的几个位都置为1。
需要提醒一下的是Bloomfilter算法会有漏失概率,即不存在的字符串有一定概率被误判为已经存在。这个概率的大小与seeds的数量、申请的内存大小、去重对象的数量有关。下面有一张表,m表示内存大小(多少个位),n表示去重对象的数量,k表示seed的个数。例如我代码中申请了256M,即1<<31(m=2^31,约21.5亿),seed设置了7个。看k=7那一列,当漏失率为8.56e-05时,m/n值为23。所以n = 21.5/23 = 0.93(亿),表示漏失概率为8.56e-05时,256M内存可满足0.93亿条字符串的去重。同理当漏失率为0.000112时,256M内存可满足0.98亿条字符串的去重。

基于Redis的Bloomfilter去重,其实就是利用了Redis的String数据结构,但Redis一个String最大只能512M,所以如果去重的数据量大,需要申请多个去重块(代码中blockNum即表示去重块的数量)。

代码中使用了MD5加密压缩,将字符串压缩到了32个字符(也可用hashlib.sha1()压缩成40个字符)。

它有两个作用,

一是Bloomfilter对一个很长的字符串哈希映射的时候会出错,经常误判为已存在,压缩后就不再有这个问题;

二是压缩后的字符为 0~f 共16中可能,我截取了前两个字符,再根据blockNum将字符串指定到不同的去重块进行去重。

总结:
基于Redis的Bloomfilter去重,既用上了Bloomfilter的海量去重能力,又用上了Redis的可持久化能力,基于Redis也方便分布式机器的去重。在使用的过程中,要预算好待去重的数据量,则根据上面的表,适当地调整seed的数量和blockNum数量(seed越少肯定去重速度越快,但漏失率越大)。

原文链接:http://blog.csdn.net/bone_ace/article/details/53107018




  • zeropython 微信公众号 5868037 QQ号 5868037@qq.com QQ邮箱
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值