python3中的collections模块 defaultdict,deque,namedtuple,ordereddict,counter


Python附带一个模块,它包含许多容器数据类型,名字叫作collections。我们将讨论它的作用和用法。
我们将讨论的是:
defaultdict
counter
deque
namedtuple
enum.Enum (包含在Python 3.4以上)

1. defaultdict

Python
In [23]: <span class="wp_keywordlink_affiliate"><a href="https://www.168seo.cn/tag/collections" title="View all posts in collections" target="_blank">collections</a></span>.<span class="wp_keywordlink_affiliate"><a href="https://www.168seo.cn/tag/defaultdict" title="View all posts in defaultdict" target="_blank">defaultdict</a></span>? Init signature: <span class="wp_keywordlink_affiliate"><a href="https://www.168seo.cn/tag/collections" title="View all posts in collections" target="_blank">collections</a></span>.defaultdict(self, /, *args, **kwargs) Docstring: defaultdict(default_factory[, ...]) --> dict with default factory The default factory is called without arguments to produce a new value when a key is not present, in __getitem__ only. A defaultdict compares equal to a dict with the same items. All remaining arguments are treated the same as if they were passed to the dict constructor, including keyword arguments. File: /usr/local/Cellar/python3/3.6.2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/collections/__init__.py Type: type In [25]: cc = collections.defaultdict() In [26]: cc Out[26]: defaultdict(None, {}) In [27]: isinstance(cc,dict) Out[27]: True # defaultdict 有着dict的全部功能,也就是一个特殊的字典
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
In [ 23 ] : collections . defaultdict ?
Init signature : collections . defaultdict ( self , / , * args , * * kwargs )
Docstring :
defaultdict ( default_factory [ , . . . ] ) -- > dict with default factory
 
The default factory is called without arguments to produce
a new value when a key is not present , in __getitem__ only .
A defaultdict compares equal to a dict with the same items .
All remaining arguments are treated the same as if they were
passed to the dict constructor , including keyword arguments .
File : / usr / local / Cellar / python3 / 3.6.2 / Frameworks / Python . framework / Versions / 3.6 / lib / python3 . 6 / collections / __init__ . py
Type : type
 
In [ 25 ] : cc = collections . defaultdict ( )
 
In [ 26 ] : cc
Out [ 26 ] : defaultdict ( None , { } )
 
In [ 27 ] : isinstance ( cc , dict )
Out [ 27 ] : True # defaultdict 有着dict的全部功能,也就是一个特殊的字典

我个人使用defaultdict较多,与dict类型不同,你不需要检查key是否存在,所以我们能这样做:

Python
from collections import defaultdict colours = ( ('Yasoob', 'Yellow'), ('Ali', 'Blue'), ('Arham', 'Green'), ('Ali', 'Black'), ('Yasoob', 'Red'), ('Ahmed', 'Silver'), ) favourite_colours = defaultdict(list) for name, colour in colours: favourite_colours[name].append(colour) print(favourite_colours) 运行输出 # defaultdict(<type 'list'>, # {'Arham': ['Green'], # 'Yasoob': ['Yellow', 'Red'], # 'Ahmed': ['Silver'], # 'Ali': ['Blue', 'Black'] # })
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from collections import defaultdict
 
colours = (
( 'Yasoob' , 'Yellow' ) ,
( 'Ali' , 'Blue' ) ,
( 'Arham' , 'Green' ) ,
( 'Ali' , 'Black' ) ,
( 'Yasoob' , 'Red' ) ,
( 'Ahmed' , 'Silver' ) ,
)
 
favourite_colours = defaultdict ( list )
 
for name , colour in colours :
favourite_colours [ name ] . append ( colour )
 
print ( favourite_colours )
运行输出
 
# defaultdict(<type 'list'>,
# {'Arham': ['Green'],
# 'Yasoob': ['Yellow', 'Red'],
# 'Ahmed': ['Silver'],
# 'Ali': ['Blue', 'Black']
# })

另一种重要的是例子就是:当你在一个字典中对一个键进行嵌套赋值时,如果这个键不存在,会触发keyError异常。 defaultdict允许我们用一个聪明的方式绕过这个问题。 首先我分享一个使用dict触发KeyError的例子,然后提供一个使用defaultdict的解决方案。
问题:

Python
some_dict = {} some_dict['colours']['favourite'] = "yellow" ## 异常输出:KeyError: 'colours' 解决方案: import collections tree = lambda: collections.defaultdict(tree) some_dict = tree() some_dict['colours']['favourite'] = "yellow" ## 运行正常 你可以用json.dumps打印出some_dict,例如: import json print(json.dumps(some_dict)) ## 输出: {"colours": {"favourite": "yellow"}}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
some_dict = { }
some_dict [ 'colours' ] [ 'favourite' ] = "yellow"
 
## 异常输出:KeyError: 'colours'
解决方案:
import collections
tree = lambda : collections . defaultdict ( tree )
some_dict = tree ( )
some_dict [ 'colours' ] [ 'favourite' ] = "yellow"
 
## 运行正常
你可以用 json . dumps打印出 some _dict,例如:
import json
print ( json . dumps ( some_dict ) )
 
## 输出: {"colours": {"favourite": "yellow"}}

counter

Counter是一个计数器,它可以帮助我们针对某项数据进行计数。比如它可以用来计算每个人喜欢多少种颜色:

Python
from collections import <span class="wp_keywordlink_affiliate"><a href="https://www.168seo.cn/tag/counter" title="View all posts in Counter" target="_blank">Counter</a></span> colours = ( ('Yasoob', 'Yellow'), ('Ali', 'Blue'), ('Arham', 'Green'), ('Ali', 'Black'), ('Yasoob', 'Red'), ('Ahmed', 'Silver'), ) favs = <span class="wp_keywordlink_affiliate"><a href="https://www.168seo.cn/tag/counter" title="View all posts in Counter" target="_blank">Counter</a></span>(name for name, colour in colours) print(favs) ## 输出: ## <span class="wp_keywordlink_affiliate"><a href="https://www.168seo.cn/tag/counter" title="View all posts in Counter" target="_blank">Counter</a></span>({ ## 'Yasoob': 2, ## 'Ali': 2, ## 'Arham': 1, ## 'Ahmed': 1 ## }) 我们也可以在利用它统计一个文件,例如: with open('filename', 'rb') as f: line_count = Counter(f) print(line_count)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from collections import Counter
 
colours = (
( 'Yasoob' , 'Yellow' ) ,
( 'Ali' , 'Blue' ) ,
( 'Arham' , 'Green' ) ,
( 'Ali' , 'Black' ) ,
( 'Yasoob' , 'Red' ) ,
( 'Ahmed' , 'Silver' ) ,
)
 
favs = Counter ( name for name , colour in colours )
print ( favs )
 
## 输出:
## Counter({
## 'Yasoob': 2,
## 'Ali': 2,
## 'Arham': 1,
## 'Ahmed': 1
## })
我们也可以在利用它统计一个文件,例如:
with open ( 'filename' , 'rb' ) as f :
     line_count = Counter ( f )
     print ( line_count )

deque

deque提供了一个双端队列,你可以从头/尾两端添加或删除元素。要想使用它,首先我们要从collections中导入deque模块:

Python
from collections import deque 现在,你可以创建一个deque对象。 d = deque() 它的用法就像<span class="wp_keywordlink"><a href="http://www.168seo.cn/python" title="python">python</a></span>的list,并且提供了类似的方法,例如: d = deque() d.append('1') d.append('2') d.append('3') print(len(d)) ## 输出: 3 print(d[0]) ## 输出: '1' print(d[-1]) ## 输出: '3' 你可以从两端取出(pop)数据: d = deque(range(5)) print(len(d)) ## 输出: 5 d.popleft() ## 输出: 0 d.pop() ## 输出: 4 print(d) ## 输出: deque([1, 2, 3])
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from collections import deque
现在,你可以创建一个 deque对象。
d = deque ( )
它的用法就像 python的 list,并且提供了类似的方法,例如:
d = deque ( )
d . append ( '1' )
d . append ( '2' )
d . append ( '3' )
 
print ( len ( d ) )
 
## 输出: 3
 
print ( d [ 0 ] )
 
## 输出: '1'
 
print ( d [ - 1 ] )
 
## 输出: '3'
你可以从两端取出 ( pop )数据:
d = deque ( range ( 5 ) )
print ( len ( d ) )
 
## 输出: 5
 
d . popleft ( )
 
## 输出: 0
 
d . pop ( )
 
## 输出: 4
 
print ( d )
 
## 输出: deque([1, 2, 3])

我们也可以限制这个列表的大小,当超出你设定的限制时,数据会从对队列另一端被挤出去(pop)。
最好的解释是给出一个例子:

Python
d = deque(maxlen=30)
1
d = deque ( maxlen = 30 )

现在当你插入30条数据时,最左边一端的数据将从队列中删除。
你还可以从任一端扩展这个队列中的数据:

Python
d = deque([1,2,3,4,5]) d.extendleft([0]) d.extend([6,7,8]) print(d) ## 输出: deque([0, 1, 2, 3, 4, 5, 6, 7, 8])
1
2
3
4
5
6
d = deque ( [ 1 , 2 , 3 , 4 , 5 ] )
d . extendleft ( [ 0 ] )
d . extend ( [ 6 , 7 , 8 ] )
print ( d )
 
## 输出: deque([0, 1, 2, 3, 4, 5, 6, 7, 8])

namedtuple

您可能已经熟悉元组。
一个元组是一个不可变的列表,你可以存储一个数据的序列,它和命名元组(namedtuples)非常像,但有几个关键的不同。
主要相似点是都不像列表,你不能修改元组中的数据。为了获取元组中的数据,你需要使用整数作为索引:

Python
man = ('Ali', 30) print(man[0]) ## 输出: Ali
1
2
3
4
man = ( 'Ali' , 30 )
print ( man [ 0 ] )
 
## 输出: Ali

嗯,那namedtuples是什么呢?它把元组变成一个针对简单任务的容器。你不必使用整数索引来访问一个namedtuples的数据。你可以像字典(dict)一样访问namedtuples,但namedtuples是不可变的。

Python
from collections import namedtuple Animal = namedtuple('Animal', 'name age type') perry = Animal(name="perry", age=31, type="cat") print(perry) ## 输出: Animal(name='perry', age=31, type='cat') print(perry.name) ## 输出: 'perry'
1
2
3
4
5
6
7
8
9
10
11
12
from collections import namedtuple
 
Animal = namedtuple ( 'Animal' , 'name age type' )
perry = Animal ( name = "perry" , age = 31 , type = "cat" )
 
print ( perry )
 
## 输出: Animal(name='perry', age=31, type='cat')
 
print ( perry . name )
 
## 输出: 'perry'

现在你可以看到,我们可以用名字来访问namedtuple中的数据。我们再继续分析它。一个命名元组(namedtuple)有两个必需的参数。它们是元组名称和字段名称。
在上面的例子中,我们的元组名称是Animal,字段名称是'name','age'和'type'。
namedtuple让你的元组变得自文档了。你只要看一眼就很容易理解代码是做什么的。
你也不必使用整数索引来访问一个命名元组,这让你的代码更易于维护。
而且,namedtuple的每个实例没有对象字典,所以它们很轻量,与普通的元组比,并不需要更多的内存。这使得它们比字典更快。

Python
from collections import namedtuple Animal = namedtuple('Animal', 'name age type') perry = Animal(name="perry", age=31, type="cat") perry.age = 42 ## 输出: ## Traceback (most recent call last): ## File "", line 1, in ## AttributeError: can't set attribute 你应该使用命名元组来让代码自文档,它们向后兼容于普通的元组,这意味着你可以既使用整数索引,也可以使用名称来访问namedtuple: from collections import namedtuple Animal = namedtuple('Animal', 'name age type') perry = Animal(name="perry", age=31, type="cat") print(perry[0]) ## 输出: perry
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from collections import namedtuple
 
Animal = namedtuple ( 'Animal' , 'name age type' )
perry = Animal ( name = "perry" , age = 31 , type = "cat" )
perry . age = 42
 
## 输出:
## Traceback (most recent call last):
## File "", line 1, in
## AttributeError: can't set attribute
你应该使用命名元组来让代码自文档,它们向后兼容于普通的元组,这意味着你可以既使用整数索引,也可以使用名称来访问 namedtuple:
from collections import namedtuple
 
Animal = namedtuple ( 'Animal' , 'name age type' )
perry = Animal ( name = "perry" , age = 31 , type = "cat" )
print ( perry [ 0 ] )
 
## 输出: perry
Python
最后,你可以将一个命名元组转换为字典,方法如下: from collections import namedtuple Animal = namedtuple('Animal', 'name age type') perry = Animal(name="Perry", age=31, type="cat") print(perry._asdict()) ## 输出: OrderedDict([('name', 'Perry'), ('age', 31), ... enum.Enum (Python 3.4+)
1
2
3
4
5
6
7
8
9
最后,你可以将一个命名元组转换为字典,方法如下:
from collections import namedtuple
 
Animal = namedtuple ( 'Animal' , 'name age type' )
perry = Animal ( name = "Perry" , age = 31 , type = "cat" )
print ( perry . _asdict ( ) )
 
## 输出: OrderedDict([('name', 'Perry'), ('age', 31), ...
enum . Enum ( Python 3.4 + )

另一个有用的容器是枚举对象,它属于enum模块,存在于Python 3.4以上版本中(同时作为一个独立的PyPI包enum34供老版本使用)。Enums(枚举类型)基本上是一种组织各种东西的方式。
让我们回顾一下上一个'Animal'命名元组的例子。
它有一个type字段,问题是,type是一个字符串。
那么问题来了,万一程序员输入了Cat,因为他按到了Shift键,或者输入了'CAT',甚至'kitten'?
枚举可以帮助我们避免这个问题,通过不使用字符串。考虑以下这个例子:

Python
from collections import namedtuple from enum import Enum class Species(Enum): cat = 1 dog = 2 horse = 3 aardvark = 4 butterfly = 5 owl = 6 platypus = 7 dragon = 8 unicorn = 9 # 依次类推 # 但我们并不想关心同一物种的年龄,所以我们可以使用一个别名 kitten = 1 # (译者注:幼小的猫咪) puppy = 2 # (译者注:幼小的狗狗) Animal = namedtuple('Animal', 'name age type') perry = Animal(name="Perry", age=31, type=Species.cat) drogon = Animal(name="Drogon", age=4, type=Species.dragon) tom = Animal(name="Tom", age=75, type=Species.cat) charlie = Animal(name="Charlie", age=2, type=Species.kitten) 现在,我们进行一些测试: >>> charlie.type == tom.type True >>> charlie.type <Species.cat: 1> 这样就没那么容易错误,我们必须更明确,而且我们应该只使用定义后的枚举类型。 有三种方法访问枚举数据,例如以下方法都可以获取到'cat'的值: Species(1) Species['cat'] Species.cat
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from collections import namedtuple
from enum import Enum
 
class Species ( Enum ) :
cat = 1
dog = 2
horse = 3
aardvark = 4
butterfly = 5
owl = 6
platypus = 7
dragon = 8
unicorn = 9
# 依次类推
 
# 但我们并不想关心同一物种的年龄,所以我们可以使用一个别名
kitten = 1 # (译者注:幼小的猫咪)
puppy = 2 # (译者注:幼小的狗狗)
 
Animal = namedtuple ( 'Animal' , 'name age type' )
perry = Animal ( name = "Perry" , age = 31 , type = Species . cat )
drogon = Animal ( name = "Drogon" , age = 4 , type = Species . dragon )
tom = Animal ( name = "Tom" , age = 75 , type = Species . cat )
charlie = Animal ( name = "Charlie" , age = 2 , type = Species . kitten )
现在,我们进行一些测试:
 
>>> charlie . type == tom . type
True
>>> charlie . type
< Species . cat : 1 >
这样就没那么容易错误,我们必须更明确,而且我们应该只使用定义后的枚举类型。
有三种方法访问枚举数据,例如以下方法都可以获取到 'cat'的值:
Species ( 1 )
Species [ 'cat' ]
Species . cat

这只是一个快速浏览collections模块的介绍,建议你阅读本文最后的官方文档。




  • zeropython 微信公众号 5868037 QQ号 5868037@qq.com QQ邮箱
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值