题目:
描述
输入一个长度为n的整型数组array,数组中的一个或连续多个整数组成一个子数组,找到一个具有最大和的连续子数组。
1.子数组是连续的,比如[1,3,5,7,9]的子数组有[1,3],[3,5,7]等等,但是[1,3,7]不是子数组
2.如果存在多个最大和的连续子数组,那么返回其中长度最长的,该题数据保证这个最长的只存在一个
3.该题定义的子数组的最小长度为1,不存在为空的子数组,即不存在[]是某个数组的子数组
4.返回的数组不计入空间复杂度计算
数据范围:
1<=n<=10^51<=n<=10
100 <= a[i] <= 100−100<=a[i]<=100
要求:时间复杂度O(n)O(n),空间复杂度O(n)O(n)
进阶:时间复杂度O(n)O(n),空间复杂度O(1)O(1)
代码:动态规划,注意下标
import java.util.*;
public class Solution {
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*输入一个长度为n的整型数组array,
数组中的一个或连续多个整数组成一个子数组,找到一个具有最大和的连续子数组。
* @param array int整型一维数组
* @return int整型一维数组
*/
public int[] FindGreatestSumOfSubArray (int[] array) {
// write code here
//动态规划:和之前相比,要求返回如果连续字数和相同,返回长度最长的一个叔祖
//动归方程:dp[i] = Math.max(dp[i - 1] + array[i] , arrray[i]);
//dp[i] :以array[i]结尾连续子数组元素和的最大值
//max:最大值
//index:最优子数组右坐标
//定义保存以array[i]结尾连续子数组的最大值
int[] dp = new int[array.length];
dp[0] = array[0];//初始化dp[0]=array[0]
int max = array[0];//最大值
int index = 0;//最优解右坐标
int maxLength = 1;//最大长度初始化为1
int length = 1;//定义数组初始长度为1
//提前判断只有数组元素为0的情况
if(array.length == 1){
return array;
}
//
for(int i = 1; i < array.length; i++){
//更新dp:以array[i]结尾连续子数组和的最大值
dp[i] = Math.max(array[i] + dp[i - 1] , array[i]);
//更新连续子数组最大值
// max = Math.max(max , dp[i]);
//更新数组长度
if(array[i] + dp[i - 1] >= array[i]){
length = length + 1;
}else{//重置长度
length = 1;
}
//更新连续子数组位置坐标、最大长度
//如果连续子数组和最大值改变,
//或者连续子数组和相同,但是长度大于最大长度进行更新数组的坐标位置
if(dp[i] > max || (dp[i] == max && length > maxLength)){
index = i;//更新最大子数组的右坐标
max = dp[i];//更新最大值
maxLength = length;//更新长度
}
}
//返回连续子数组和最大的数组
//copyOfRange:复制数组元素(左闭右开),即[)
//数组左下标:index - maxLength + 1 ; 右下表: index
int[] res = Arrays.copyOfRange(array , index - maxLength + 1 , index + 1);
return res;
}
}