四、图的深度优先搜索算法

1、实验内容
1)编程实现图的深度优先算法。
2)修改算法,使之可以判断无向图有几个连通分量。
1、 实验要求
1) 通过实例,懂得深度优先搜索的机制。
2) 用2-3个实例验证算法。

GraphDFS C++算法:
<Graph.h>
#include <iostream>
#include<queue>

//图的基本算法类封装实现
//这里图用邻接表表示法(且是不带权的无向图)

template <class ElemType>
class CraphClass
{
public:
	//图邻接表表示中节点数据结构
	typedf struct StructGraphNode
	{
		ElemType elem;
		struct StructGraphNode *next;
	}GraphNode, *GraphNodeLink;
	//图像遍历时节点颜色标记
	enum NodeColor
	{
		WHITE,//未被发现
		GRAY,//已被发现但是未访问
		BLACK//已被访问
	};

	static const int MaxVal = 99999;

	GraphClass();//默认构造函数
	~CraphClass()//析构函数
	//依据图中包含的节点以及邻接矩阵创建邻接表表示的图
	void createGraph(ElemType*a, int n, char *matrix);
	void BFSGraph();//图的广度优先搜索
	void DFSGraph();//图的深度优先搜索
	
	void _printAdjacencyList();//输出图的当前邻接表
private:
	GraphNodeLink *root;//


};
<Graph.cpp>
#include <Graph.h>
using namespace std;

#define N 6
#define INFINITE 0x7fffffff
#define WHITE 1
#define GRAY 2
#define BLACK 3


struct Vertex
{
	Vertex * next;
	int id;
	Vertex() :next(NULL), id(0){}
};


struct Graph
{
	Vertex *Adj[N + 1];
	int color[N + 1]; 
	int p[N + 1];
	int d[N + 1];
	int f[N + 1];
	Graph()
	{
		for (int i = 1; i <= N; i++)
		{
			Adj[i] = new Vertex;
			color[i] = WHITE;
			d[i] = 0;
			f[i] = 0;
			p[i] = 0;
		}
	}
	~Graph()
	{
		for (int i = 1; i <= N; i++)
			delete Adj[i];
	}
};

void Print(Graph *g);
bool Init(Graph *g);
bool InsertEdge(Graph *g, int start, int end);
void PaintColor(Graph *g, int vertex, int color);
void DepthFirstVisit(Graph *g, int vertex, int& v_time);

//插入边
bool InsertEdge(Graph *g, int start, int end)
{
	Vertex* v = new Vertex();
	v->id = end;
	if (g->Adj[start]->next == NULL)
	{
		Vertex* s = new Vertex();
		s->id = start;
		g->Adj[start] = s;
	}
	Vertex* tmp = g->Adj[start];
	while (tmp->next)
	{
		tmp = tmp->next;
	}
	tmp->next = v;
	return true;
}

bool graph(Graph *g)
{
	InsertEdge(g, 1, 2);
	InsertEdge(g, 1, 4);
	InsertEdge(g, 2, 5);
	InsertEdge(g, 3, 5);
	InsertEdge(g, 3, 6);
	InsertEdge(g, 4, 2);
	InsertEdge(g, 5, 4);
	InsertEdge(g, 3, 1);
	InsertEdge(g, 6, 6);
	return true;
}

bool DepthFirstSearch(Graph *g, int vertex)
{
	for (int i = 1; i <= N; i++)
	{
		g->color[i] = WHITE;
	}
	int time = 0;
	for (int i = 1; i <= N; i++)
	{
		if (g->color[i] == WHITE)
		{
			DepthFirstVisit(g, i, time);
		}
	}
	return true;
}
void DepthFirstVisit(Graph *g, int vertex, int& v_time)
{
	g->color[vertex] = GRAY;
	v_time++;
	g->d[vertex] = v_time;
	Vertex * v = g->Adj[vertex];
	int node = v->id;
	std::cout << node << "\t";
	v = v->next;
	while (v)
	{
		if (g->color[v->id] == WHITE)
		{
			g->p[v->id] = vertex;
			DepthFirstVisit(g, v->id, v_time);
		}
		v = v->next;
	}
	g->color[node] = BLACK;
	g->f[node] = v_time++;
}

int main()
{
	Graph *g = new Graph;
	graph(g);
	DepthFirstSearch(g, 1);
	getchar();
	return 0;
}

GraphDFS java 算法:

package exercise04;

public class DFS {
	public static void main(String[] args) {
		int [][]c = new int[9][9];
		for(int i = 0;i < c.length;i++){
			for(int j = 0;j < c[0].length;j++){
				c[i][j] = 0;
			}
		}
		c[1][2] = c[2][1] = 1;
		c[1][3] = c[3][1] = 1;
		c[2][4] = c[4][2] = 1;
		c[2][5] = c[5][2] = 1;
		c[3][6] = c[6][3] = 1;
		c[3][7] = c[7][3] = 1;
		c[4][8] = c[8][4] = 1;
		c[5][8] = c[8][5] = 1;
		c[6][7] = c[7][6] = 1;
		System.out.println("The c :");
		for(int i = 1;i < c.length;i++){
			for(int j = 1;j < c.length;j++){
				System.out.print(c[i][j] + " ");
			}System.out.println();
		}
		
		System.out.println("the count = " + DFSSearch(c));
	}
	
	public static int DFSSearch(int [][]c){
		int []visited = new int[c.length];
		for(int i = 0;i < c.length;i++){
			visited[i] = 0;
		}
		
		for(int i = 1;i < c.length;i++){
			if(visited[i] == 0){
				DFS(c,i,visited);
				visited[0]++;
			}
		}
		return visited[0];
	}
	
	public static void DFS(int [][]c,int v,int []visited){
		System.out.println("visit : " + v);
		visited[v] = 1;
		int w = getFirstNeibor(c,v,visited);
		while(w != -1){
			if(visited[w] == 0){
				DFS(c,w,visited);
			}
			else{
				w = getNextNeibor(c,v,w,visited);
			}
		}
	}
	
	public static int getFirstNeibor(int [][]c,int v,int []visited){
		for(int i = 0;i < c.length;i++){
			if(c[i][v] == 1 && visited[i] == 0){
				return i;
			}
		}
		return -1;
	}
	
	public static int getNextNeibor(int [][]c,int v,int w,int []visited){
		for(int i = 0;i < c.length;i++){
			if(c[i][v] == 1 && i != w && visited[i] == 0){
				return i;
			}
		}
		return -1;
	}

}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值