
深度学习
Lightning-py
这个作者很懒,什么都没留下…
展开
-
Python使用scikit-learn库进行特征提取和相似度计算
在Python中使用scikit-learn库进行特征提取和相似度计算是不合适的。scikit-learn库主要用于机器学习任务,如分类、回归和聚类等。如果你想要在Python中进行特征提取和相似度计算,可以使用其他库,如nltk、gensim或numpy等。函数计算了arr1中的每个单词与arr2中的每个单词之间的编辑距离,然后将其转换为相似度分数。请注意,这里的相似度计算方法只是示例之一,具体的相似度计算方法取决于你的需求。在上面的示例中,我们使用了nltk库中的。原创 2024-01-05 15:51:42 · 592 阅读 · 0 评论 -
深度学习-Python调用ONNX模型
例如,如果您的模型期望的输入形状是(batch_size, 10),您可以将示例代码中的input_size变量设置为10。在您给出的代码中,您正在尝试将一个形状为(batch_size, 784)的输入张量提供给模型,但是模型期望输入张量的形状为(batch_size, 10)。因此,ONNX是一种强大的深度学习模型转换和部署工具,可以大大加速深度学习模型的开发和部署过程。导出模型:在训练好深度学习模型后,通过ONNX的支持的框架,比如PyTorch、TensorFlow等将模型导出为ONNX格式。原创 2023-09-20 17:22:56 · 11924 阅读 · 0 评论 -
深度学习-ONNX模型
同时,ONNX还支持导出到其他平台和硬件设备上,如Android、iOS、Windows等。该网站为ONNX社区的官方网站,提供了ONNX的文档、教程、工具、社区等资源,以帮助机器学习开发人员更好地使用和推广ONNX模型。ONNX是由Microsoft和Facebook合作推出的,它使得不同深度学习框架之间可以相互转换模型,从而使得机器学习开发人员可以更加灵活地选择使用不同的框架进行模型开发和部署。使用ONNX格式的模型,可以加快模型开发和调试的速度,同时也方便了模型的部署和应用。原创 2023-09-20 09:39:46 · 617 阅读 · 1 评论