机器学习
文章平均质量分 89
songxudong0302
一切皆虚无
展开
-
测试数据集的均匀抽取
在进行有监督的机器学习时,数据集一般分为测试数据集和训练数据集。 一、问题描述: 从下图中的训练数据集(红点)中分离出测试数据集(蓝点),使两者彼此差异最大,且各自均匀平铺。 二、步骤及结果: (1)在以下坐标均匀分布的点集中如何解决?0,00,10,20,30,41,01,1原创 2018-01-25 18:46:02 · 2003 阅读 · 0 评论 -
散乱位置数据插值
深度学习时防止过拟合的有效方法是扩增数据集。(1)问题描述:对下图坐标及值的数据进行扩增,原始511个位置点及其值。图1:已知数据511点(2)相关知识:SciPy的插值函数https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.htmlscipy.inter原创 2018-01-27 22:32:47 · 2124 阅读 · 0 评论