归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
首先考虑下如何将将二个有序数列合并。这个非常简单,只要从比较二个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数。然后再进行比较,如果有数列为空,那直接将另一个数列的数据依次取出即可。
//将有序数组a[]和b[]合并到c[]中
void MemeryArray(int a[], int n, int b[], int m, int c[]){
int i, j, k;
i = j = k = 0;
while (i < n && j < m){
if (a[i] < b[j])
c[k++] = a[i++];
else
c[k++] = b[j++];
}
while (i < n)
c[k++] = a[i++];
while (j < m)
c[k++] = b[j++];
}
可以看出合并有序数列的效率是比较高的,可以达到O(n)。
解决了上面的合并有序数列问题,再来看归并排序,其的基本思路就是将数组分成二组A,B,如果这二组组内的数据都是有序的,那么就可以很方便的将这二组数据进行排序。如何让这二组组内数据有序了?
可以将A,B组各自再分成二组。依次类推,当分出来的小组只有一个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的二个小组就可以了.
这样通过先递归的分解数列,再合并数列就完成了归并排序。
下面给出了代码。
/**
* @projName:WZServer
* @className:QuickSortTest
* @description:快速排序方法类
* @creater:Administrator
* @creatTime:2013年10月15日下午2:46:29
* @alter:Administrator
* @alterTime:2013年10月15日下午2:46:29
* @remark:
* @version
*/
public class QuickSortTest {
public static void main(String[] args) {
int[] a = new int[] { 2, 4, 1, 5, 8, 7, 9 };
new QuickSortTest().mergeSort(a);
for (int i : a) {
System.out.print(i + ":");
}
}
boolean mergeSort(int a[]) {
int n = a.length;
if (n == 0) {
return false;
}
int[] pTempArray = new int[n];
mergesort(a, 0, n - 1, pTempArray);
return true;
}
void mergesort(int a[], int first, int last, int temp[]) {
if (first < last) {
int mid = (first + last) / 2;
mergesort(a, first, mid, temp); // 左边有序
mergesort(a, mid + 1, last, temp); // 右边有序
mergearray(a, first, mid, last, temp); // 再将二个有序数列合并
}
}
// 将有二个有序数列a[first...mid]和a[mid...last]合并。
void mergearray(int a[], int first, int mid, int last, int temp[]) {
int i = first, j = mid + 1;
int m = mid, n = last;
int k = 0;
while (i <= m && j <= n) {
if (a[i] < a[j]) {
temp[k++] = a[i++];
} else {
temp[k++] = a[j++];
}
}
while (i <= m) {
temp[k++] = a[i++];
}
while (j <= n) {
temp[k++] = a[j++];
}
for (i = 0; i < k; i++) {
a[first + i] = temp[i];
}
}
}
归并排序的效率是比较高的,设数列长为N,将数列分开成小数列一共要logN步,每步都是一个合并有序数列的过程,时间复杂度可以记为O(N),故一共为O(N*logN)。
因为归并排序每次都是在相邻的数据中进行操作,所以归并排序在O(N*logN)的几种排序方法(快速排序,归并排序,希尔排序,堆排序)也是效率比较高的。
在本人电脑上对冒泡排序,直接插入排序,归并排序及直接使用系统的qsort()进行比较(均在Release版本下)