预测函数:
损失函数:
参数: (正规方程)
以上即为参数最优解的闭式解,但我们可以发现*的计算涉及矩阵的求逆,这样的话就有一些限制了,只有在X^T*X为满秩矩阵或者正定矩阵时,才可以使用以上式子计算。但在现实任务中,X^T*X往往不是满秩矩阵,这样的话就会导致有多个解,并且这多个解都能使均方误差最小化,但并不是所有的解都适合于做预测任务,因为某些解可能会产生过拟合的问题。
什么时候选择正规方程
梯度下降特点:
选择合适的学习速率α
通过不断的迭代,找到θ0 ... θn, 使得J(θ)值最小
正规方程特点:
不需要选择学习速率α,不需要n轮迭代
只需要一个公式计算即可
但是并不是所有的线性回归都适合用正规方程,我们知道求解一个矩阵的逆复杂度为O(n^3),因此当特征维度n非常大的时候(X^T * X)^-1需要O(n^3)时间,此时选择正规方程效率将会特别低
当n < 1000时候选择正规方程比较合适,但是当n > 1000的时候使用梯度下降算法会是更佳的方案