python3降到python2

1、首先查看当前python版本

[root@test bin]# python
Python 2.7.5 (default, Aug  4 2017, 00:39:18) 
[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> 

2、查看/usr/bin目录下的python版本

[root@test admin]# cd  /usr/bin/
[root@test bin]# ll

3、删除/usr/bin目录下的python 

rm -rf /usr/bin/python

4、新增python2.7的软连接

ln -s /usr/bin/python2.7 /usr/bin/python

5、查看python版本

[root@test bin]# python
Python 2.7.5 (default, Aug  4 2017, 00:39:18) 
[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> 

t-SNE(t-Distributed Stochastic Neighbor Embedding)是一种流行的非线性降维算法。它可以将高维数据降维到较低维度的数据,以便于可视化和观察。 Python中的t-SNE算法可以使用scikit-learn库中的tsne模块来实现。通过调用tsne算法的fit_transform函数,我们可以将数据降维到3维空间中。 使用Python进行t-SNE降维到3维的过程大致如下: 1. 导入所需的库:首先,需要导入必要的库,包括scikit-learn库中的tsne模块和numpy库。 ```python from sklearn.manifold import TSNE import numpy as np ``` 2. 准备数据:将需要降维的数据准备好,通常以numpy数组的形式表示。 ```python data = np.array(...) # 代表原始数据的numpy数组 ``` 3. 创建t-SNE对象:实例化TSNE对象,并设置降维后的目标维度为3。 ```python tsne = TSNE(n_components=3) ``` 4. 执行降维:调用t-SNE对象的fit_transform函数,将数据降维到3维度。 ```python data_3d = tsne.fit_transform(data) ``` 5. 可视化结果:根据需要,可以使用matplotlib等库将降维后的数据进行可视化,以便于观察和分析。 ```python import matplotlib.pyplot as plt # 绘制3D散点图 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(data_3d[:, 0], data_3d[:, 1], data_3d[:, 2]) plt.show() ``` 通过以上步骤,我们可以使用Python中的t-SNE算法将数据降维到3维,并通过可视化工具进行展示。这有助于更好地理解和分析数据的结构和特征。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值