超细节的对比学习和SimCSE知识点

本文探讨对比学习与SimCSE在自然语言处理中的应用,通过问答形式深入理解对比学习的基本原理,包括其与度量学习的区别、负例处理、infoNCE loss以及SimCSE中的dropout mask和无监督学习流程。SimCSE利用dropout作为数据增强手段,促进相同句子向量的拉近,以实现有效的语义表示学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2020年的Moco和SimCLR等,掀起了对比学习在CV领域的热潮,2021年的SimCSE,则让NLP也乘上了对比学习的东风。下面就尝试用QA的形式挖掘其中一些细节知识点,去更好的理解对比学习和SimCSE。

1、如何去理解对比学习,它和度量学习的差别是什么?

2、对比学习中一般选择一个batch中的所有其他样本作为负例,那如果负例中有很相似的样本怎么办?

3、infoNCE loss 如何去理解,和CE loss有什么区别?

4、对比学习的infoNCE loss 中的温度常数的作用是什么?

5、SimCSE中的dropout mask 指的是什么,dropout rate的大小影响的是什么?

6、SimCSE无监督模式下的具体实现流程是怎样的,标签生成和loss计算如何实现?

1、如何去理解对比学习,它和度量学习的差别是什么?

对比学习的思想是去拉近相似的样本,推开不相似的样本,而目标是要从样本中学习到一个好的语义表示空间。

论文[1]给出的 “Alignment and Uniformity on the Hypersphere”,就是一个非常好的去理解对比学习的角度。

在这里插入图片描述

好的对比学习系统应该具备两个属性:Alignment和Uniformity(参考上图)。

所谓“Alignment”,指的是相似的例子,也就是正例,映射到单位超球面后,应该有接近的特征,也即是说,在超球面上距离比较近;

所谓“Uniformity”,指的是系统应该倾向在特征里保留尽可能多的信息,这等价于使得映射到单位超球面的特征,尽可能均匀地分布在球面上,分布得越均匀,意味着保留的信息越充分。分布均匀意味着两两有差异,也意味着各自保有独有信息,这代表信息保留充分。(参考自[2])

度量学习和对比学习的思想是一样的,都是去拉近相似的样本,推开不相似的样本

但是对比学习是无监督或者自监督学习方法,而度量学习一般为有监督学习方法

而且对比学习在loss设计时,为单正例多负例的形式,因为是无监督,数据是充足的,也就可以找到无穷的负例,但如何构造有效正例才是重点

而度量学习多为二元组或三元组的形式,如常见的Triplet形式(anchor,positive,negative),Hard Negative的挖掘对最终效果有较大的影响

2、对比学习中一般选择一个batch中的所有其他样本作为负例,那如果负例中有很相似的样本怎么办?

在无监督无标注的情况下,这样的伪负例,其实是不可避免的,首先可以想到的方式是去扩大语料库,去加大batch size,以降低batch训练中伪负例的占比,减少它的影响。

另外,神经网络是有一定容错能力的,像伪标签方法就是一个很好的印证,但前提是错误标签数据或伪负例占较小的比例。

PS:也确有人考虑研究过这个问题,可以参考论文[3][4]

3、infoNCE loss 如何去理解,和CE loss有什么区别?

infoNCE loss 全称 info Noise Contrastive Estimation loss,对于一个batch中的样本i,它的loss为:
L i = − log ⁡ ( e S ( z i , z i + ) / τ / ∑ j = 0 K e S ( z i , z j ) / τ ) {L_i} = - \log ({e^{S({z_i},z_i^ + )/\tau }}/\sum\nolimits_{j = 0}^K { {e^{S({z_i},{z_j})/\tau }}} ) Li=log(eS(zi,zi+)/τ/j=0KeS(zi

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海晨威

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值