激活函数

1. 激活函数

20-æ¿æ´»å½æ°åå¶æ¢¯åº¦-æ¿æ´»å½æ°.jpg

导数:

20-æ¿æ´»å½æ°åå¶æ¢¯åº¦-ç¥ç»åæ¶æ.jpg

2.sigmoid函数

其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线)。A logistic function or logistic curve is a common “S” shape (sigmoid curve). 也就是说,sigmoid把一个值映射到0-1之间。

该函数具有如下的特性:当x趋近于负无穷时,y趋近于0;当x趋近于正无穷时,y趋近于1;当x= 0时,y=0.5. 把(−∞,+∞)的值压缩在0-1之间

优点:

1.Sigmoid函数的输出映射在(0,1)之间,单调连续,输出范围有限,优化稳定,可以用作输出层

2.求导容易,处处可导,导数为:f′(x)=f(x)(1−f(x))

缺点:

1.由于其软饱和性,容易产生梯度消失,导致训练出现问题。即,当|x|较大时sigmoid的偏导为0,所以参数得不到更新,此时则会有梯度消失现象发生。

2.其输出并不是以0为中心的。

import tensorflow as tf

a = tf.linspace(-10., 10., 10) # 均匀分布
a

<tf.Tensor: id=17, shape=(10,), dtype=float32, numpy=
array([-10.       ,  -7.7777777,  -5.5555553,  -3.333333 ,  -1.1111107,    1.1111116,   3.333334 ,   5.5555563,   7.7777786,  10.       ],
      dtype=float32)>

with tf.GradientTape() as tape:
    tape.watch(a)
    y = tf.sigmoid(a)

y

<tf.Tensor: id=19, shape=(10,), dtype=float32, numpy=
array([4.5418739e-05, 4.1875243e-04, 3.8510859e-03, 3.4445167e-02,
       2.4766389e-01, 7.5233626e-01, 9.6555483e-01, 9.9614894e-01,
       9.9958128e-01, 9.9995458e-01], dtype=float32)>

grads = tape.gradient(y, [a])
grads

[<tf.Tensor: id=24, shape=(10,), dtype=float32, numpy=
 array([4.5416677e-05, 4.1857705e-04, 3.8362551e-03, 3.3258699e-02,
        1.8632649e-01, 1.8632641e-01, 3.3258699e-02, 3.8362255e-03,
        4.1854731e-04, 4.5416677e-05], dtype=float32)>]

应用:

logistic函数在统计学和机器学习领域应用最为广泛或者最为人熟知的肯定是逻辑回归模型了。逻辑回归(Logistic Regression,简称LR)作为一种对数线性模型(log-linear model)被广泛地应用于分类和回归场景中。此外,logistic函数也是神经网络最为常用的激活函数,即sigmoid函数。

机器学习中一个重要的预测模型逻辑回归(LR)就是基于Sigmoid函数实现的。LR模型的主要任务是给定一些历史的{X,Y}

其中X是样本n个特征值,Y的取值是{0,1}代表正例与负例

通过对这些历史样本的学习,从而得到一个数学模型,给定一个新的X,能够预测出Y。LR模型是一个二分类模型,即对于一个X,预测其发生或不发生。

但事实上,对于一个事件发生的情况,往往不能得到100%的预测,因此LR可以得到一个事件发生的可能性,超过50%则认为事件发生,低于50%则认为事件不发生

从LR的目的上来看,在选择函数时,有两个条件是必须要满足的:

  1. 取值范围在0~1之间。
  2. 对于一个事件发生情况,50%是其结果的分水岭,选择函数应该在0.5中心对称。

从这两个条件来看,Sigmoid很好的符合了LR的需求。

 

3. softmax函数

3.1 softmax初探

在机器学习尤其是深度学习中,softmax是个非常常用而且比较重要的函数,尤其在多分类的场景中使用广泛。他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之和也刚好为1。 
首先我们简单来看看softmax是什么意思。顾名思义,softmax由两个单词组成,其中一个是max。对于max我们都很熟悉,比如有两个变量a,b。如果a>b,则max为a,反之为b。用伪码简单描述一下就是 if a > b return a; else b。 
另外一个单词为soft。max存在的一个问题是什么呢?如果将max看成一个分类问题,就是非黑即白,最后的输出是一个确定的变量。更多的时候,我们希望输出的是取到某个分类的概率,或者说,我们希望分值大的那一项被经常取到,而分值较小的那一项也有一定的概率偶尔被取到,所以我们就应用到了soft的概念,即最后的输出是每个分类被取到的概率。

3.2 softmax的定义

首先给一个图,这个图比较清晰地告诉大家softmax是怎么计算的。

è¿éåå¾çæè¿°

假设有一个数组V,Vi表示V中的第i个元素,那么这个元素的softmax值为: 
                                                           S{_{i}}=\frac{e^{i}}{\sum_{j} e^{j}}

Si​代表的是第i个神经元的输出。

该元素的softmax值,就是该元素的指数与所有元素指数和的比值。
这个定义可以说很简单,也很直观。那为什么要定义成这个形式呢?原因主要如下。 
1.softmax设计的初衷,是希望特征对概率的影响是乘性的。 
2.多类分类问题的目标函数常常选为cross-entropy。 

其实就是在输出后面套一个这个函数,在推导之前,我们统一一下网络中的各个表示符号,避免后面突然出现一个什么符号懵逼推导不下去了。
首先是神经元的输出,一个神经元如下图:

神经元的输出设为:

                                                                           z_i=\sum_{j}w_{ij}x_{ij}+b

其中w_{ij}是第i个神经元的第j个权重,b是偏移值。zi表示该网络的第i个输出。

给这个输出加上一个softmax函数,那就变成了这样:

                                                                                     a{_{i}}=\frac{e^{z_i}}{\sum_{k} e^{z_k}}

a_i代表softmax的第i个输出值,右侧就是套用了softmax函数。

神经网络是用error back-propagation训练的,这个过程中有一个关键的量是\partial L/\partial z_i。后面我们会进行详细推导。

3.3 softmax求导

在神经网络反向传播中,要求一个损失函数,这个损失函数其实表示的是真实值与网络的估计值的误差,知道误差了,才能知道怎样去修改网络中的权重。

损失函数可以有很多形式,这里用的是交叉熵函数,主要是由于这个求导结果比较简单,易于计算,并且交叉熵解决某些损失函数学习缓慢的问题。交叉熵的函数是这样的:

                                                                      Loss=-\sum_{i}y_{i}lna_i

其中,y_i表示真实值,a_i表示求出的softmax值。

接下来对Loss求导,即loss对于神经元输出(z_i)的梯度, \frac{\partial Loss}{\partial z_i}
根据符合函数求导法则: 

                                                                     \frac{\partial Loss}{\partial z_i}=\sum_{j} (\frac{Loss_{j}}{\partial a_{j}} \frac{\partial a_j}{\partial z_i})

                                                     Loss=Loss_1+Loss_2+...+Loss_9 \\ Loss_i=-y_ilna_i

我们已经将数值映射到了0-1之间,并且和为1,则有:

                                                                     \frac{e^i}{\sum_j e^j} = 1 - \frac{\sum_{j \neq i} e^j}{\sum_j e^j}

接下来开始求导

(1) \frac{\partial Loss_j}{\partial a_j}=\frac{\partial (-y_jln a_j))}{\partial a_j}=-y_j\frac{1}{a_j}

(2) 分两种情况:

a. 如果i=j:

\frac{\partial a_i}{\partial z_i}=\frac{\partial (\frac{e^{z_i}}{\sum_{k}e^{z_k}}))}{\partial z_i}=\frac{\sum_{k}e^{z_k}e^{z_i}-(e^{z_i})^2}{(\sum_{k}e^{z_k})^2}=(\frac{e^{z_i}}{\sum_{k}e^{z_k}})(1-\frac{e^{z_i}}{\sum_{k}e^{z_k}}) \\ =a_i (1-a_i)

b. 如果i\neq j:

\frac{\partial a_j}{\partial z_i}=\frac{\partial (\frac{e^{z_j}}{\sum_{k}e^{z_k}}))}{\partial z_i}=-e^{z_j}(\frac{1}{\sum_{k}e^{z_k}})^2e^{z_i}=-a_i a_j

接下来,我们需要把上面的组合起来:

\frac{\partial Loss}{\partial z_i}=\sum_{j} (\frac{Loss_{j}}{\partial a_{j}} \frac{\partial a_j}{\partial z_i})=\sum_{j=i} (\frac{Loss_{j}}{\partial a_{j}} \frac{\partial a_j}{\partial z_i})+\sum_{j\neq i} (\frac{Loss_{j}}{\partial a_{j}} \frac{\partial a_j}{\partial z_i}) \\ =\sum_{j\neq i}{-y_i\frac{1}{a_j}(-a_ia_j)+(-y_i\frac{1}{a_i})( a_i(1-a_i))} \\ =\sum_{j\neq i}a_iy_j+(-y_i(1-a_i)) \\ =\sum_{j\neq i} a_iy_j+a_iy_j-y_i \\ = a_i\sum_{j}y_j-y_j

最后的结果看起来简单了很多,最后,针对分类问题,我们给定的结果y_i最终只会有一个类别是1,其他类别都是0,因此,对于分类问题,这个梯度等于:

 

3.4 softmax VS k个二元分类器

如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢? 
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。) 
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。 
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢? 
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。

4. Tanh

  • 类似于sigmoid函数,但是值域为[-1,1]

20-æ¿æ´»å½æ°åå¶æ¢¯åº¦-tanh.jpg

Derivative

import tensorflow as tf
a = tf.linspace(-5.,5.,10)
a

<tf.Tensor: id=29, shape=(10,), dtype=float32, numpy=
array([-5.        , -3.8888888 , -2.7777777 , -1.6666665 , -0.55555534,
        0.5555558 ,  1.666667  ,  2.7777781 ,  3.8888893 ,  5.        ],
      dtype=float32)>

tf.tanh(a)

<tf.Tensor: id=31, shape=(10,), dtype=float32, numpy=
array([-0.99990916, -0.9991625 , -0.99229795, -0.9311096 , -0.5046722 ,
        0.5046726 ,  0.93110967,  0.99229795,  0.9991625 ,  0.99990916],
      dtype=float32)>

5. Rectified Linear Unit

20-æ¿æ´»å½æ°åå¶æ¢¯åº¦-relu.jpg

Derivative

  • 减少sigmoid的梯度爆炸或者梯度消失的现象
import tensorflow as tf
a = tf.linspace(-1.,1.,10)
a

<tf.Tensor: id=36, shape=(10,), dtype=float32, numpy=
array([-1.        , -0.7777778 , -0.5555556 , -0.3333333 , -0.1111111 ,
        0.11111116,  0.33333337,  0.5555556 ,  0.7777778 ,  1.        ],
      dtype=float32)>

tf.nn.relu(a)

<tf.Tensor: id=38, shape=(10,), dtype=float32, numpy=
array([0.        , 0.        , 0.        , 0.        , 0.        ,
       0.11111116, 0.33333337, 0.5555556 , 0.7777778 , 1.        ],
      dtype=float32)>

tf.nn.leaky_relu(a)

<tf.Tensor: id=40, shape=(10,), dtype=float32, numpy=
array([-0.2       , -0.15555556, -0.11111112, -0.06666666, -0.02222222,
        0.11111116,  0.33333337,  0.5555556 ,  0.7777778 ,  1.        ],
      dtype=float32)>

 

附录

求导法则和公式

 

 

 

 

 

 

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值