一道推起来很爽的组合优化题

link
大意就是求 ∑ i = 1 n ∑ j = 1 m ( i , j ) i j \sum_{i=1}^{n}\sum_{j=1}^{m}\frac{(i,j)}{ij} i=1nj=1mij(i,j),其中 n , m ≤ 1 e 6 , 有 1 e 4 次查询 n,m\leq 1e6,有1e4次查询 n,m1e6,1e4次查询
原式子

= ∑ d = 1 m i n ( n , m ) ∑ i = 1 n ∑ j = 1 m d i j [ ( i , j ) = d ] =\sum_{d=1}^{min(n,m)}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{d}{ij}[(i,j)=d] =d=1min(n,m)i=1nj=1mijd[(i,j)=d]

= ∑ d = 1 m i n ( n , m ) ∑ i = 1 n ∑ j = 1 m 1 d i d j d [ ( i d , j d ) = 1 ] [ d ∣ i ] [ d ∣ j ] =\sum_{d=1}^{min(n,m)}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{\frac{1}{d}}{\frac{i}{d}\frac{j}{d}}[(\frac{i}{d},\frac{j}{d})=1][d|i][d|j] =d=1min(n,m)i=1nj=1mdidjd1[(di,dj)=1][di][dj]

= ∑ d = 1 m i n ( n , m ) ∑ i = 1 n ∑ j = 1 m 1 d i d j d [ d ∣ i ] [ d ∣ j ] ∑ t ∣ ( i d , j d ) μ ( t ) =\sum_{d=1}^{min(n,m)}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{\frac{1}{d}}{\frac{i}{d}\frac{j}{d}}[d|i][d|j]\sum_{t|(\frac{i}{d},\frac{j}{d})}\mu(t) =d=1min(n,m)i=1nj=1mdidjd1[di][dj]t(di,dj)μ(t)

= ∑ d = 1 m i n ( n , m ) 1 d ∑ t = 1 m i n ( n , m ) d μ ( t ) ∑ i = 1 n ∑ j = 1 m 1 i d j d [ d t ∣ i ] [ d t ∣ j ] =\sum_{d=1}^{min(n,m)}\frac{1}{d}\sum_{t=1}^{\frac{min(n,m)}{d}}\mu(t)\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{1}{\frac{i}{d}\frac{j}{d}}[dt|i][dt|j] =d=1min(n,m)d1t=1dmin(n,m)μ(t)i=1nj=1mdidj1[dti][dtj]

= ∑ d = 1 m i n ( n , m ) 1 d ∑ t = 1 m i n ( n , m ) d μ ( t ) ∑ i = 1 n d t ∑ j = 1 m d t 1 i d j d d 2 t 2 =\sum_{d=1}^{min(n,m)}\frac{1}{d}\sum_{t=1}^{\frac{min(n,m)}{d}}\mu(t)\sum_{i=1}^{\frac{n}{dt}}\sum_{j=1}^{\frac{m}{dt}}\frac{1}{\frac{i}{d}\frac{j}{d}d^2t^2} =d=1min(n,m)d1t=1dmin(n,m)μ(t)i=1dtnj=1dtmdidjd2t21

= ∑ d = 1 m i n ( n , m ) 1 d ∑ t = 1 m i n ( n , m ) d 1 t 2 μ ( t ) ∑ i = 1 n d t ∑ j = 1 m d t 1 i j =\sum_{d=1}^{min(n,m)}\frac{1}{d}\sum_{t=1}^{\frac{min(n,m)}{d}}\frac{1}{t^2}\mu(t)\sum_{i=1}^{\frac{n}{dt}}\sum_{j=1}^{\frac{m}{dt}}\frac{1}{ij} =d=1min(n,m)d1t=1dmin(n,m)t21μ(t)i=1dtnj=1dtmij1

= ∑ d = 1 m i n ( n , m ) 1 d ∑ t = 1 m i n ( n , m ) d 1 t 2 μ ( t ) ( ∑ i = 1 n d t 1 i ) ( ∑ j = 1 m d t 1 j ) =\sum_{d=1}^{min(n,m)}\frac{1}{d}\sum_{t=1}^{\frac{min(n,m)}{d}}\frac{1}{t^2}\mu(t)(\sum_{i=1}^{\frac{n}{dt}}\frac{1}{i})(\sum_{j=1}^{\frac{m}{dt}}\frac{1}{j}) =d=1min(n,m)d1t=1dmin(n,m)t21μ(t)(i=1dtni1)(j=1dtmj1)
推到这里询问的复杂度来到了 ( O ( n l o g ) ) (O(nlog)) (O(nlog)),预处理倒数和之后直接暴力枚举即可。但是注意到有多次询问,所以还是要化到最简才可以

f ( n , D ) = ∑ i = 1 n D 1 i , f ( m , D ) = ∑ i = 1 m D 1 j f(n,D)=\sum_{i=1}^{\frac{n}{D}}\frac{1}{i},f(m,D)=\sum_{i=1}^{\frac{m}{D}}\frac{1}{j} f(n,D)=i=1Dni1,f(m,D)=i=1Dmj1
原式

= ∑ D = 1 m i n ( n , m ) f ( n , D ) f ( m , D ) ∑ d ∣ D 1 d 1 ( D / d ) 2 μ ( D d ) =\sum_{D=1}^{min(n,m)}f(n,D)f(m,D)\sum_{d|D}\frac{1}{d}\frac{1}{(D/d)^2}\mu(\frac{D}{d}) =D=1min(n,m)f(n,D)f(m,D)dDd1(D/d)21μ(dD)

= ∑ D = 1 m i n ( n , m ) f ( n , D ) f ( m , D ) / D 2 ∑ d ∣ D d μ ( D d ) =\sum_{D=1}^{min(n,m)}f(n,D)f(m,D)/D^2\sum_{d|D}d\mu(\frac{D}{d}) =D=1min(n,m)f(n,D)f(m,D)/D2dDdμ(dD)
注意到后面是一个欧拉反演

= ∑ D = 1 m i n ( n , m ) f ( n , D ) f ( m , D ) D 2 ϕ ( D ) =\sum_{D=1}^{min(n,m)}\frac{f(n,D)f(m,D)}{D^2}\phi(D) =D=1min(n,m)D2f(n,D)f(m,D)ϕ(D)

使用二阶整除分块的话,在 O ( n ) O(n) O(n)预处理的基础上可以做到 O ( s q r t ) O(sqrt) O(sqrt)的单次查询复杂度
code

ll f[N],phi[N],vis[N],p[N];
ll in[N];
ll cnt;
ll ksm(ll x,ll y)
{
    ll ans=1;
    while(y)
    {
        if(y&1) ans=ans*x%mod;
        x=x*x%mod;
        y>>=1;
    }
    return ans;
}
ll inv(ll x)
{
    return ksm(x,mod-2);
}
void init(ll n)
{
	phi[1]=1;
	for(int i=2;i<=n;++i)
	{
		if(!vis[i]) p[++cnt]=i,phi[i]=i-1;
		for(int j=1;(j<=cnt)&&(i*p[j]<=n);++j)
		{
			vis[i*p[j]]=1;
			if(i%p[j]==0)
			{
				phi[i*p[j]]=phi[i]*p[j];
				break;
			}
			phi[i*p[j]]=phi[i]*(p[j]-1);
		}
    }
    for(ll i=1;i<=n;++i) f[i]=phi[i]*inv(i*i%mod)%mod;
    for(int i=1;i<=n;++i) f[i]=(f[i]+f[i-1])%mod;
    for(ll i=1;i<=n;++i) in[i]=inv(i);
    for(int i=1;i<=n;++i) in[i]=(in[i]+in[i-1])%mod;
}
ll n,m;
void solve() 
{
    cin>>n>>m;
    ll ans=0;
    for(ll l=2,r;l<=min(n,m);l=r+1)
    {
        r=min(n,m);r=min(r,n/(n/l));r=min(r,m/(m/l));
        (ans+=in[n/l]*in[m/l]%mod*((f[r]-f[l-1])%mod+mod)%mod)%=mod;
    }
    (ans+=in[n]*in[m]%mod)%=mod;
    cout<<ans<<endl;
}

没啥trick,就是嗯推,但是推完就很爽

  • 29
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值