为什么需要ANALYZE
首先介绍下RBO和CBO,这是数据库引擎在执行SQL语句时的2种不同的优化策略。
RBO(Rule-Based Optimizer)
基于规则的优化器,就是优化器在优化查询计划的时候,是根据预先设置好的规则进行的,这些规则无法灵活改变。举个例子,索引优先于扫描,这是一个规则,优化器在遇到所有可以利用索引的地方,都不会选择扫描。这在多数情况下是正确的,但也不完全如此:
比如一张个人信息表中性别栏目加上索引,由于性别是只有2个值的枚举类,也就是常说的基数非常低的列,在这种列上使用索引往往效果还不如扫描。
因此RBO的优化方式是死板的,粗放的,目前已逐渐被CBO方式取代。
CBO(Cost Based Optimizer)
基于代价的优化器,就是优化器在优化查询计划的时候,是根据动态计算出来的Cost(代价)来判断如何进行选择。那如何计算代价呢?这里一般是基于代价模型和统计信息,代价模型是否合理,统计信息是否准确都会影响优化的效果。
还是拿上面员工性别统计为例,在CBO的优化方式下,物理计划就不会选择走索引。当然上面的例子比较简单,在Greenplum运行的复杂SQL中,优化器最核心的还是在scan和join的各种实现方式中做出选择,这才是能大幅提升性能的关键点。
前面提到CBO需要一个代价模型和统计信息,代价模型和规则一样,需要预先设置好,那统计信息是如何收集的?多数基于CBO优化的计算引擎,包括Greenplum,Oracle,Hive,Spark等都类似,除了可以按一定规则自动收集统计信息外,还都支持手动输入命令进行收集,通常这个命令都叫ANALYZE。
结论:由于CBO优化的需求,因此我们需要使用ANALYZE命令去收集统计信息。
ANALYZE怎么使用
说明
ANALYZE是Greenplum提供的收集统计信息的命令。
ANALYZE支持三种粒度,列,表,库,如下:
-- 创建表
CREATE TABLE open.t_ttt(
f_id bigint,
f_name character varying(128)
) WITH (appendonly=true) DISTRIBUTED BY (f_id);
-- 只搜集f_name列的统计信息
ANALYZE open.t_ttt(f_name);
-- 搜集open.t_ttt表的统计信息
ANALYZE open.t_ttt;
-- 搜集当前库所有表的统计信息,需要有权限才行
ANALYZE;
限制
ANALYZE会给目标表加SHARE UPDATE EXCLUSIVE锁,也就是与UPDATE,DELETE,还有DDL语句冲突。
速度
ANALYZE是一种采样统计算法,通常不会扫描表中所有的数据,但是对于大表,也仍会消耗一定的时间和计算资源。
采样统计会有精度的问题,因此Greenplum也提供了一个参数default_statistics_target,调整采样的比例。简单说来,这个值设置得越大,采样的数量就越多,准确性就越高,但是消耗的时间和资源也越多。
直接修改服务器的参数会影响整个集群,通常不建议这样操作。如果确实有需要,可以尝试只修改某列的对应参数,如下:
ALTER TABLE {table_name} ALTER COLUMN {col_name} SET STATISTICS {-1|0-1000};
时机
根据上文所述,ANALYZE会加锁并且也会消耗系统资源,因此运行命令需要选择合适的时机尽可能少的运行。根据Greenplum官网建议,以下3种情况发生后建议运行ANALYZE
批量加载数据后,比如COPY
创建索引之后
INSERT,UPDATE,DELETE大量数据之后
自动化
除了手动运行,ANALYZE也可以自动化。实际上默认情况下,我们对空表写入数据后,Greenplum也会自动帮我们收集统计信息,不过之后在写入数据,就需要手动操作了。
有2个参数可以用来调整自动化收集的时机,gp_autostats_mode和gp_autostats_on_change_threshold。gp_autostats_mode默认是on_no_stats,也就是如果表还没有统计信息,这时候写入数据会导致自动收集,这之后,无论表数据变化多大,都只能手动收集了。如果将gp_autostats_mode修改为on_change,就是在数据变化量达到gp_autostats_on_change_threshold参数配置的量之后,系统就会自动收集统计信息。
分区表
Greenplum官网对于分区表的ANALYZE专门进行了讲解,其实只要保持默认值,不去修改系统参数optimizer_analyze_root_partition,那么对于分区表的操作并没有什么不同,直接在root表上进行ANALYZE即可,系统会自动把所有叶子节点的分区表的统计信息都收集起来。
如果分区表的数目很多,那在root表上进行ANALYZE可能会非常耗时,通常的分区表都是带有时间维度的,历史的分区表并不会修改,因此单独ANALYZE数据发生变化的分区,是更好的实践。
命令:analyze[talbe[(column,..)]]
收集表内容的统计信息,以优化执行计划。如创建索引后,执行此命令,对于随即查询将会利用索引。
自动统计信息收集
在postgresql.conf中有控制自动收集的参数gp_autostats_mode设置,gp_autostats_mode三个值:none、no_change、on_no_stats(默认)
none:禁止收集统计信息
on change:当一条DML执行后影响的行数超过gp_autostats_on_change_threshold参数指定的值时,会执行完这条DML后再自动执行一个analyze的操作来收集表的统计信息。
no_no_stats:当使用create talbe as select、insert、copy时,如果在目标表中没有收集过统计信息,那么会自动执行analyze来收集这张表的信息。gp默认使用on_no_stats,对数据库的消耗比较小,但是对于不断变更的表,数据库在第一次收集统计信息之后就不会再收集了。需要人为定时执行analyze。
如果有大量的运行时间在1分钟以下的SQL,你会发现大量的时间消耗在收集统计信息上。为了降低这一部分的消耗,可以指定对某些列不收集统计信息,如下所示:1.create table test(id int,name text,note text);上面是已知道表列note不需出现在join列上,也不会出现在where语句的过滤条件下,因为可以把这个列设置为不收集统计信息:1.alter table test alter note SET STATISTICS 0;