AI菜鸟向前飞 — LangChain系列之九 - RouterChain的四种实现方式

回顾

AI菜鸟向前飞 — LangChain系列之六 - 深入浅出LCEL与Chain(上篇)

AI菜鸟向前飞 — LangChain系列之七 - 深入浅出LCEL与Chain(中篇)

AI菜鸟向前飞 — LangChain系列之八 - 深入浅出LCEL与Chain(下篇)

    上一篇给大家把LangChain Expression Language的语法和原理给大家介绍完毕,这一篇给大家介绍一个比较有趣的“路由”(Router)chain,也算是比较常用,用下图来给大家讲解下,一图胜万言:)

图片

    简单来说,就是根据“用户输入”的信息,能够动态的选择交给“谁”去解决问题,在用户看来是个黑盒子。 

    带来的好处: 

    • 动态选择,免去了“用户输入"时,可能有一些专业术语没有加上,漏掉一些细节(如:一些小白用户常常踩的坑)—— 也是用Template帮大家提前加上

    • 默认指定处理问题的Prompt(如:Prompt X),这样用户无需担心没人会给它处理问题了:)

如何使用

    网上大部分资料,仅提供了一个例子(而且不一定每个人都能看得懂),我这里一股脑儿给大家提供四个,请君任选其一

    By the way,在以下例子中,我用的是阿里千问LLM,因为我性能好的电脑在家没拿,没法在这台破电脑上本地运行Llama3,所以... 

阿里千问还是很给力的:)

图片

……

闲言少叙,Show me the code

方法一

程序

from langchain_community.llms.tongyi import Tongyi
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE
from langchain.chains import ConversationChain
from langchain.chains.router import MultiPromptChain

# 不同的模版
template_dev = """
    你是一名资深的开发专家,精通软件开发过程中的所有阶段以及注意事项,可以随时解答大家对于软件开发的疑问
    
    {input}

"""
template_qa = """
    你是一名资深的测试专家,精通软件测试过程中的所有阶段以及注意事项,可以随时解答大家对于软件测试的疑问
    
    {input}

"""

template_acdc = """
    你是一名资深的硬件电源开发专家,精通软件测试过程中的所有阶段以及注意事项,可以随时解答大家对于软件测试的疑问
    
    {input}

"""

# 模板的描述与具体模版关联关系
prompt_infos = [
    {
        "name": "Dev",
        "description": "我可以回答你关于开发各个阶段内容的解释",
        "prompt_template": template_dev,
    },
    {
        "name": "QA",
        "description": "我可以回答你关于测试各个阶段内容的解释",
        "prompt_template": template_qa,
    },
    
    {
        "name": "ACDC",
        "description": "我可以回答你关于硬件电源开发的所有问题",
        "prompt_template": template_acdc,
    }
]

llm = Tongyi(model_name="qwen-turbo")

chain_map = {}

for info in prompt_infos:

    prompt = PromptTemplate(
        template=info['prompt_template'],
        input_variables=["input"]
    )

    # 请注意这里不能用 chain = prompt | llm 具体原因以后我给大家介绍
    chain = LLMChain(
        llm=llm,
        prompt=prompt
    )
  
    # 构建目标链(不同的链名称与模板链的关联关系)
    chain_map[info["name"]] = chain

destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos]
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations="\n".join(destinations))
router_prompt = PromptTemplate(template=router_template, input_variables=["input"], output_parser=RouterOutputParser())

router_chain = LLMRouterChain.from_llm(llm, router_prompt, verbose=True)

# 没有匹配上链,使用的默认链
default_chain = ConversationChain(
    llm=llm,
    output_key="text"
)

router_chain = MultiPromptChain(
    router_chain=router_chain,
    destination_chains=chain_map,
    default_chain=default_chain,
)

# 验证结果
response = router_chain.invoke("硬件电源开发分为哪几步?")

print(response)

输出结果

图片

方法二

程序

from langchain_community.llms.tongyi import Tongyi
from langchain.chains.router.multi_prompt import MultiPromptChain
  
template_dev = """
    你是一名资深的开发专家,精通软件开发过程中的所有阶段以及注意事项,可以随时解答大家对于软件开发的疑问
    {input}
"""

template_qa = """
    你是一名资深的测试专家,精通软件测试过程中的所有阶段以及注意事项,可以随时解答大家对于软件测试的疑问
    {input}
"""

template_acdc = """
    你是一名资深的硬件电源开发专家,精通软件测试过程中的所有阶段以及注意事项,可以随时解答大家对于软件测试的疑问
    {input}
"""

prompt_infos = [
    {
        "name": "Dev",
        "description": "我可以回答你关于开发各个阶段内容的解释",
        "prompt_template": template_dev
    },
    {
        "name": "QA",
        "description": "我可以回答你关于测试各个阶段内容的解释",
        "prompt_template": template_qa
    },
    {
        "name": "ACDC",
        "description": "我可以回答你关于硬件电源开发的所有问题",
        "prompt_template": template_acdc
    }
]

router_chain = MultiPromptChain.from_prompts(llm=Tongyi(model_name="qwen-turbo"), prompt_infos=prompt_infos, verbose=True)
response = router_chain.invoke("硬件电源开发分为哪几步?")
print(response)

输出结果

图片

方法三

程序

from langchain.embeddings.dashscope import DashScopeEmbeddings
from langchain.utils.math import cosine_similarity
from langchain.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
from langchain_community.llms.tongyi import Tongyi

template_dev = """
你是一名资深的开发专家,精通软件开发过程中的所有阶段以及注意事项,可以随时解答大家对于软件开发的疑问
{input}
"""

template_qa = """
你是一名资深的测试专家,精通软件测试过程中的所有阶段以及注意事项,可以随时解答大家对于软件测试的疑问
{input}
"""

template_acdc = """
你是一名资深的硬件电源开发专家,精通软件测试过程中的所有阶段以及注意事项,可以随时解答大家对于软件测试的疑问
{input}
"""

questions_dev = [
    "什么是软件开发?",
    "软件开发包含哪些阶段?",
    "什么是概要设计、详细设计?",
    "什么是单元测试?"
]

questions_qa = [
    "什么是软件测试?",
    "软件测试包含哪些阶段?",
    "什么是测试设计?",
    "什么是回归测试?"
]

questions_acdc = [
    "什么是硬件开发?",
    "硬件开发包含哪些阶段?",
    "电源开发包含哪些阶段?",
    "什么是AC?什么是DC?"
]

embeddings = DashScopeEmbeddings()
embeddings_dev = embeddings.embed_documents(questions_dev)
embeddings_qa = embeddings.embed_documents(questions_qa)
embeddings_acdc = embeddings.embed_documents(questions_acdc)

llm = Tongyi(model_name="qwen-turbo")

def prompt_router(query):
    query_embedding = embeddings.embed_query(query["input"])
    similar_dev = cosine_similarity([query_embedding], embeddings_dev)[0]
    similar_qa = cosine_similarity([query_embedding], embeddings_qa)[0]
    similar_acdc = cosine_similarity([query_embedding], embeddings_acdc)[0]
    max_similar = max(max(similar_dev), max(similar_qa), max(similar_acdc))

    if max_similar == max(similar_dev):
        print("使用软件开发模板(questions_dev)回答问题")
        return PromptTemplate.from_template(template_dev)
    elif max_similar == max(similar_qa):
        print("使用软件测试模板(questions_qa)回答问题")
        return PromptTemplate.from_template(template_qa)
    elif max_similar == max(similar_acdc):
        print("使用硬件电源开发模板(template_acdc)回答问题")
        return PromptTemplate.from_template(template_acdc)
    else:
        print("默认使用软件测试模板(questions_qa)回答问题")
        return PromptTemplate.from_template(template_qa)

router_chain = {"input": RunnablePassthrough()} | RunnableLambda(prompt_router) | llm
response = router_chain.invoke("硬件电源开发分为哪几步?")
print(response)

输出结果

图片

方法四(使用classify)

程序

from langchain_community.llms.tongyi import Tongyi
from langchain.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
from langchain.embeddings.dashscope import DashScopeEmbeddings
from langchain_core.prompts import PromptTemplate

template_dev = """
    你是一名资深的开发专家,精通软件开发过程中的所有阶段以及注意事项,可以随时解答大家对于软件开发的疑问
    {input}
"""
template_qa = """
    你是一名资深的测试专家,精通软件测试过程中的所有阶段以及注意事项,可以随时解答大家对于软件测试的疑问
{input}
"""
template_acdc = """
    你是一名资深的硬件电源开发专家,精通软件测试过程中的所有阶段以及注意事项,可以随时解答大家对于软件测试的疑问
    {input}
"""

classify_x = """
    使用classify来区分问题是属于哪种类型
    <若问题是关于软件开发技术相关的内容,classify it as 'template_dev'>
    <若问题是关于软件测试技术相关的内容,classify it as 'template_qa'>
    <若问题是关于硬件电源技术相关的内容,classify it as 'template_acdc'>
    
    {question}

"""

classification_template = PromptTemplate.from_template(classify_x)

llm = Tongyi(model_name="qwen-turbo")
classification_chain = classification_template | llm

def prompt_router(query):
    classification = classification_chain.invoke({"question": query["input"]})
    if classification == "template_dev":
        print("使用软件开发模板(template_dev)回答问题")
        return PromptTemplate.from_template(template_dev)
    elif classification == "template_qa":
        print("使用软件测试模板(template_qa)回答问题")
        return PromptTemplate.from_template(template_qa)
    elif classification == "template_acdc":
        print("使用硬件电源开发模板(template_acdc)回答问题")
        return PromptTemplate.from_template(template_acdc)
    else:
        print("默认使用软件测试模板(template_qa)回答问题")
        return PromptTemplate.from_template(template_qa)

router_chain = {"input": RunnablePassthrough()} | RunnableLambda(prompt_router) | llm
response = router_chain.invoke("硬件电源开发分为哪几步?")
print(response)

输出结果

图片

方法三 所提到的向量匹配相关内容,在后面的RAG篇会给大家详细介绍,莫急哈

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值