Datawhale 零基础入门CV-Task02.数据读取与数据扩增

主要内容

  • 数据读取
  • 数据扩增方法
  • Pytorch读取赛题数据

学习目标

  • 学会PythonPytorch中图像读取
  • 学会扩增方法和Pytorch读取赛题数据

图像读取

  • 由于赛题数据是图像数据,赛题的任务是识别图像中的字符。因此需要完成对数据的读取操作,在Python中有很多库可以完成数据读取的操作,比较常见的有PillowOpenCV

Pillow

  • PillowPython图像处理函数库PIL的一个分支,Pillow提供了常见的图像读取和处理的操作,而且可以与ipython notebook无缝集成,是应用比较广泛的库
    在这里插入图片描述
  • 实现
from PIL import Image,ImageFilter 
im = Image.open(r"D:\input\mchar_train\timg.JFIF")
plt.imshow(im)

在这里插入图片描述

  • 应用模糊滤镜
    在这里插入图片描述
  • 首先可以利用系统自带的画图工具转为jpg格式
  • 实现应用模糊滤镜
from PIL import Image,ImageFilter,ImageFilter 
im = Image.open(r"D:\input\mchar_train\timg.jpg")
im2 = im.filter(ImageFilter.BLUR)
im2.save('blur.jpg','jpeg')
plt.imshow(im2)

在这里插入图片描述

OpenCV

  • OpenCV是一个跨平台的计算机视觉库,最早由Intel开源得来,拥有众多的计算机视觉、数字图像处理和机器视觉等功能。OpenCV在功能上比Pillow更强大
    在这里插入图片描述
  • 实现
# 库在前面已经导入过了
import cv2
img = cv2.imread(r"D:\input\mchar_train\mchar_train\000000.png")
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
plt.imshow(img)

在这里插入图片描述
OpenCV官网
OpenCV扩展算法库

数据扩增方法

  • 在赛题中需要对图像进行字符识别,因此需要完成数据的读取操作同时也需要完成数据扩增操作

数据扩增介绍

  • 数据扩增可以增加训练集的样本,同时可以有效缓解模型过拟合的情况,也可以给模型带来的更强的泛化能力
    在这里插入图片描述
  • 数据扩增的作用:数据扩增可以扩展样本空间

数据扩增方法

  • 从颜色空间、尺度空间到样本空间,同时根据不同任务数据扩增都有相应的区别
  • 对于图像分类,数据扩增一般不会改变标签:对于物体检测、数据扩增会改变物体坐标位置;对于图像分割,数据扩增会改变像素标签
    常见的数据扩增方法
  • 在常见的数据扩增方法中,一般会从图像颜色、尺寸、形态、空间和像素等角度进行变换。不同的数据扩增方法可以自由进行组合,得到更丰富的数据扩增方法,下面给出以torchvision为例,常见的数据扩增方法

transforms.CenterCrop:对图片中心进行裁剪
thansforms.ColorJitter:对图像颜色的对比度、饱和度和零度进行变换
transforms.FiveCrop:对图像四个角和中心进行剪裁得到五分图像
transforms.Grayscale:对图像进行灰度变换
transforms.Pad:使用固定值进行像素填充
transforms.RandomAffine:随机仿射变换
transforms.RandomCrop:随机区域裁剪
transforms.RandomHorizontalFlip:随机水平翻转
transforms.RandomRotation:随即旋转
transforms.RandomVerticalFilp:随机垂直翻转

在这里插入图片描述

  • 对于图像中的字符进行识别,不能进行翻转操作,翻转后可能改变字符原本的含义

常用的数据扩增库

  • torchvisionpytorch官方提供的数据扩增库,提供了基本的数据扩增方法,可以与torch进行集成,但数据扩增方法种类较少,速度中等

github

  • imagaug:常用的第三方数据扩增库,提供了多样的数据扩增方法,组合起来比较方便,速度较快

github

  • albumentations:常用的第三方数据扩增库,提供了多样的数据扩增方法,对图像分类、语义分割,物体检测和关键点检测都支持,速度较快

使用文档

Pytorch读取数据

  • Pytorch中数据是通过Dataset进行封装,并通过DataLoder进行并行读取,所以只需重载一下数据读取的逻辑就可以完成数据的读取
import os, sys, glob, shutil, json
import cv2
from PIL import Image
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms
class SVHNDataset(Dataset):
    def __init__(self, img_path, img_label, transform=None):
        self.img_path = img_path
        self.img_label = img_label
        if transform is not None:
            self.transform = transform
        else:
            self.transform = None

    def __getitem__(self, index):
        img = Image.open(self.img_path[index]).convert('RGB')

        if self.transform is not None:
            img = self.transform(img)
 
        # 原始SVHN中类别10为数字0
        lbl = np.array(self.img_label[index], dtype=np.int)
        lbl = list(lbl) + (5 - len(lbl)) * [10]

        return img, torch.from_numpy(np.array(lbl[:5]))
    def __len__(self):
        return len(self.img_path)
train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open(r"D:\input\mchar_train.json"))
train_label = [train_json[x]['label'] for x in train_json]

data = SVHNDataset(train_path, train_label,
        transforms.Compose([
            # 缩放到固定尺⼨
            transforms.Resize((64, 128)),
            # 随机颜⾊变换
            transforms.ColorJitter(0.2, 0.2, 0.2),
 
            # 加⼊随机旋转
            transforms.RandomRotation(5),
 
            # 将图⽚转换为pytorch 的tesntor
            transforms.ToTensor(),

            # 对图像像素进⾏归⼀化
            transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
            ]))

在这里插入图片描述

  • Dataset:对数据集的封装,提供索引方式的对数据样本进行读取
  • DataLoder:对Dataset进行封装,提供批量读取的迭代读取
  • 加入DataLoder后,数据读取代码改写如下
import os, sys, glob, shutil, json
import cv2

from PIL import Image
import numpy as np

import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms

class SVHNDataset(Dataset):
	def __init__(self, img_path, img_label, transform=None):
		self.img_path = img_path
		self.img_label = img_label
		if transform is not None:
			self.transform = transform
		else:
			self.transform = None
	def __getitem__(self, index):
		img = Image.open(self.img_path[index]).convert('RGB')

		if self.transform is not None:
			img = self.transform(img)
 
		# 原始SVHN中类别10为数字0
		lbl = np.array(self.img_label[index], dtype=np.int)
		lbl = list(lbl) + (5 - len(lbl)) * [10]
 
		return img, torch.from_numpy(np.array(lbl[:5]))

	def __len__(self):
		return len(self.img_path)

train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]

train_loader = torch.utils.data.DataLoader(
	SVHNDataset(train_path, train_label,
		transforms.Compose([
			transforms.Resize((64, 128)),
			transforms.ColorJitter(0.3, 0.3, 0.2),
			transforms.RandomRotation(5),
			transforms.ToTensor(),
			transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
		])),
	batch_size=10, # 每批样本个数
	shuffle=False, # 是否打乱顺序
	num_workers=10, # 读取的线程个数
)

for data in train_loader:
	break
  • 加入DataLoder后,数据按照批次获取,每批次调用Dataset读取单个样本进行拼接,此时data的格式为:
torch.Size([10, 3, 64, 128]), torch.Size([10, 6])
  • 前者为图像文件,为batchsize * chanel * height * width次序;后者为字符标签

本章小结

  • 对数据读取进行详细了解,学会常见的数据扩增方法和使用,最后使用Pytorch框架对赛题的数据进行读取
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读