🌟 核心目标
通过Stable Diffusion 生成图片 + AI 视频工具链自动化处理,构建一条低成本、高产出、可复制的短视频生产线,实现日更 100 条视频的内容工业化目标。
📌 一、技术架构与工具链选型
1. 核心工具链
环节 | 工具 / 技术方案 | 核心功能 |
---|---|---|
图片生成 | Stable Diffusion + ControlNet | 批量生成高质量图片(支持本地部署或阿里云 PAI-DSW) |
视频生成 | Runway ML Gen-2 / Pika Labs | 基于图片生成 3-12 秒动态视频(Runway 支持文生视频,Pika 支持 3D 动画) |
批量处理 | FFmpeg Batch + 视频闪闪脚本 | 批量混剪、添加水印、调整分辨率 |
云服务 | 阿里云 PAI-DSW / Runway ML 云服务 | 降低本地硬件门槛(推荐阿里云按量付费模式) |
提示词管理 | 提示词模板库 + 自动化生成脚本 | 统一品牌风格,提升生成效率(参考 OpenAI 提示词最佳实践) |
2. 湖南广电案例参考
- 技术架构:采用 AIGC 自动化平台,结合长视频拆条、二创视频生成、智能剪辑,日产短视频超 6000 条。
- 核心经验:
- 构建多模态素材库(图片、音频、字幕)
- 开发定制化提示词模板(如 "产品名 + 使用场景 + 卖点")
- 利用云 GPU 集群实现并行渲染
🚀 二、日更 100 条实操流程(7 步全解)
1. 提示词模板库搭建(1 小时)
# 示例:电商产品提示词模板
promp