3Sum[medium]
Description
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note: The solution set must not contain duplicate triplets.
For example, given array S = [-1, 0, 1, 2, -1, -4],
A solution set is:
[
[-1, 0, 1],
[-1, -1, 2]
]
Analysis
这道题目是之前所做的Add Two Sum的升级版,这道题目要求寻找数组中和为0的3个数,与之前所做的题目的最大区别是两个数的和题目要求解只有一个,而这道题目明显可能存在这多组解,除此之外,我们不能从题目给的例子可以看出,解得给出存在着一定的顺序,所以我们可以得出本题所需要考虑的三大要点:
- 求和
- 排序
- 去重
一开始,我打算采用类似于Add Two Sum的算法,即多重循环;
for (int i = 0; i < s; i++) {
for (int j = i + 1; j < s; j++) {
int sumoftwo = nums[i]+nums[j];
for (int k = j+1; k < s; k++) {
if ((sumoftwo+nums[k]) == 0) {
vector<int> temp;
temp.push_back(nums[i]);
temp.push_back(nums[j]);
temp.push_back(nums[k]);
sort(temp.begin(), temp.end());
result.push_back(temp);
}
}
}
}
此题中排序主要利用的是STL中vector的sort函数;
去重利用的是erase函数;
result.erase(unique(result.begin(), result.end()), result.end());
然而不幸的是由于复杂度为O(n*n*n),导致运行超时,那还有什么方法可以降低复杂度,经过思考以及查阅资料
首先,将原数组排序;
以每一个数的相反数作为剩下两个数求和的target(类似于add two number);
设置两个变量h,r 分别从前,从后遍历数组,终止条件即为h >= r;
- 当 nums[h]+nums[r] 大于 target 要缩小其中一个 即r- -;
- 当 nums[h]+nums[r] 大于 target 要增大其中一个 即h++;
- 当 nums[h]+nums[r] 等于 target 即获得满足要求的组合;
接下来的遍历则要避免nums[h],nums[r]的重复;
Solution
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
int s = nums.size();
for (int i = 0; i < s; i++) {
if (i >= 1) {
if (nums[i] == nums[i-1]) continue;
}
int sumoftwo = -nums[i];
int h = i+1;
int r = s-1;
while (h < r) {
if (nums[h]+nums[r] > sumoftwo) r--;
else if (nums[h]+nums[r] < sumoftwo) h++;
else if (nums[h]+nums[r] == sumoftwo) {
vector<int> temp;
temp.push_back(nums[i]);
temp.push_back(nums[h]);
temp.push_back(nums[r]);
result.push_back(temp);
int v1 = nums[h];
int v2 = nums[r];
while (h < r&&nums[h] == v1) h++;
while (h < r&&nums[r] == v2) r--;
}
}
}
return result;
}
};