我们以前在开发大数据量的分页存储过程时,往往都为了怎么样实现高效的性能,而大伤脑筋,似乎总是想写出最佳的存储过程分页方法,我们假如建立一个学生基本信息表StudentInfo,我们看在Sql Server 2000中我们实现的存储过程:
CREATE
PROCEDURE
p_GetStudentInfo
@strWhere varchar ( 1500 ) -- 查询条件 (注意: 不要加 where)
, @PageSize int = 50 -- 页尺寸
, @PageIndex int = 1 -- 页码
AS
BEGIN
declare @strSQL varchar ( 5000 ) -- 主语句
declare @strTmp varchar ( 110 ) -- 临时变量
declare @strOrder varchar ( 400 ) -- 排序类型
set @strTmp = ' <(select min '
set @strOrder = ' order by studentinfoid desc '
if @PageIndex = 1
begin
if @strWhere != ''
set @strSQL = ' select top ' + str ( @PageSize ) + ' * from studentinfo where ' + @strWhere + ' ' + @strOrder
else
set @strSQL = ' select top ' + str ( @PageSize ) + ' * from studentinfo ' + @strOrder
-- 如果是第一页就执行以上代码,这样会加快执行速度
end
else
begin
-- 以下代码赋予了@strSQL以真正执行的SQL代码
set @strSQL = ' select top ' + str ( @PageSize ) + ' * from studentinfo
where studentinfoid ' + @strTmp + ' (studentinfoid) from (select top ' + str (( @PageIndex - 1 ) * @PageSize ) + ' studentinfoid from studentinfo ' + @strOrder + ' ) as tblTmp) ' + @strOrder
if @strWhere != ''
set @strSQL = ' select top ' + str ( @PageSize ) + ' * from studentinfo
where studentinfoid ' + @strTmp + ' (studentinfoid) from
(select top ' + str (( @PageIndex - 1 ) * @PageSize ) + ' studentinfoid from studentinfo where ' + @strWhere + ' '
+ @strOrder + ' ) as tblTmp) and ' + @strWhere + ' ' + @strOrder
end
-- print (@strSQL)
exec ( @strSQL )
END
GO
@strWhere varchar ( 1500 ) -- 查询条件 (注意: 不要加 where)
, @PageSize int = 50 -- 页尺寸
, @PageIndex int = 1 -- 页码
AS
BEGIN
declare @strSQL varchar ( 5000 ) -- 主语句
declare @strTmp varchar ( 110 ) -- 临时变量
declare @strOrder varchar ( 400 ) -- 排序类型
set @strTmp = ' <(select min '
set @strOrder = ' order by studentinfoid desc '
if @PageIndex = 1
begin
if @strWhere != ''
set @strSQL = ' select top ' + str ( @PageSize ) + ' * from studentinfo where ' + @strWhere + ' ' + @strOrder
else
set @strSQL = ' select top ' + str ( @PageSize ) + ' * from studentinfo ' + @strOrder
-- 如果是第一页就执行以上代码,这样会加快执行速度
end
else
begin
-- 以下代码赋予了@strSQL以真正执行的SQL代码
set @strSQL = ' select top ' + str ( @PageSize ) + ' * from studentinfo
where studentinfoid ' + @strTmp + ' (studentinfoid) from (select top ' + str (( @PageIndex - 1 ) * @PageSize ) + ' studentinfoid from studentinfo ' + @strOrder + ' ) as tblTmp) ' + @strOrder
if @strWhere != ''
set @strSQL = ' select top ' + str ( @PageSize ) + ' * from studentinfo
where studentinfoid ' + @strTmp + ' (studentinfoid) from
(select top ' + str (( @PageIndex - 1 ) * @PageSize ) + ' studentinfoid from studentinfo where ' + @strWhere + ' '
+ @strOrder + ' ) as tblTmp) and ' + @strWhere + ' ' + @strOrder
end
-- print (@strSQL)
exec ( @strSQL )
END
GO
我们在上面的存储过程中可以看到,如果执行的是第一页的记录时,我们可以看到只执行
'
select top
'
+
str
(
@PageSize
)
+
'
* from studentinfo where
'
+
@strWhere
+
'
'
+
@strOrder
就可以了,而如果翻页的时候,就会在条件查询中又嵌套子查询,势必性能会有所下降,而这个已经在我们Sql Server2000中算是高效的分页存储过程实现方式了,而现在如果我们换作Sql Server 2005的时候,我们是不是还是用这种方式呢?
在Sql Server 2005中,我们可以利用新增函数row_number()来更高效的实现分页存储
CREATE
PROCEDURE
p_GetStudentInfo
@PageSize INT ,
@PageIndex INT ,
@strWhere varchar ( 1500 ) -- 查询条件(注意: 不要加where)
As
Begin
select * from (
select row_number() over ( order by StudentInfoId) row, * from StudentInfo ) StudentInfo
where row between @PageSize * ( @PageIndex - 1 ) and @PageSize * @PageIndex
End
go
@PageSize INT ,
@PageIndex INT ,
@strWhere varchar ( 1500 ) -- 查询条件(注意: 不要加where)
As
Begin
select * from (
select row_number() over ( order by StudentInfoId) row, * from StudentInfo ) StudentInfo
where row between @PageSize * ( @PageIndex - 1 ) and @PageSize * @PageIndex
End
go
依照群组显示每条记录在该群组中出现的顺序位置,在显示每条记录编号时非常有用,并且搭配OVER子句,这样就可以实现查询记录的条数了。
我们现在来比较一下它们执行的性能,StudentInfo表中现在有30多万条数据,我们分别来执行下面的存储过程:
Exec
p_GetStudentInfo
@PageSize = 10000 ,
@PageIndex = 10 ,
@strWhere = ' 1=1 '
@PageSize = 10000 ,
@PageIndex = 10 ,
@strWhere = ' 1=1 '
在Sql Server 2000中,执行的时间是接近2秒;
在Sql Server 2005中,执行的时间显示的是接近0秒。
如果数据涉及到千万级的数据时,比较上面两种方法,就可以看到一些显著的差别了。