模式识别与机器学习
spardarks
这个作者很懒,什么都没留下…
展开
-
特征提取的方法
<br />常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。<br />一颜色特征<br />(一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化转载 2011-03-07 20:41:00 · 3050 阅读 · 0 评论 -
Belief propagation
<br />zz http://blog.sina.com.cn/s/blog_60a751620100eiq8.html<br /> <br />Belief propagation是machine learning的泰斗J. Pearl的最重要的贡献。对于统计学来说,它最重要的意义就是在于提出了一种很有效的求解条件边缘概率(conditional marginal probability)的方法。说的有点晦涩了,其实所谓求解条件边缘概率,通俗地说,就是已知某些条件的情况下,推导另外某些事件发生的概率。<转载 2011-03-16 08:28:00 · 833 阅读 · 0 评论