温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作
主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等
业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。
收藏点赞不迷路 关注作者有好处
文末获取源码
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
摘 要
本文旨在设计与实现一个基于Spark的高考志愿填报推荐系统,旨在帮助高考生根据自身成绩和兴趣,精准推荐合适的大学和专业。
系统采用大数据处理框架Spark,结合机器学习算法,实现了对高考数据的深度挖掘和分析,为考生提供科学、有效的志愿填报建议。系统捕捉考生个人特征、成绩、兴趣与大学专业之间的复杂关系,通过Spark的数据处理功能,对原始高考数据进行预处理。包括数据的清洗、去重、填补缺失值等操作,确保数据的质量和准确性。同时,通过数据转换,将原始数据转换成适合模型训练的格式,为后续的模型训练提供数据支持。通过特征工程的特征选择和参数调优,将高考数据中的非数值型数据进行转换,优化模型的性能,提高了推荐的准确性,以适应模型训练的需要。训练出的模型能够根据考生信息,预测其适合报考的大学和专业。
最终通过Web界面展示推荐结果。界面设计简洁清晰,易于操作。考生可以通过输入自己的高考成绩、兴趣等信息,系统根据训练好的模型,为其推荐。
关键词:Spark;高考志愿填报;推荐系统
ABSTRACT
The purpose of this paper is to design and implement a Spark-based college entrance examination voluntary application recommendation system, which aims to help college entrance examination candidates accurately recommend suitable universities and majors according to their own grades and interests.
The system uses the big data processing framework Spark, combined with machine learning algorithms, to realize the in-depth mining and analysis of college entrance examination data, and provide candidates with scientific and effective suggestions for voluntary filling. The system captures the complex relationship between candidates' personal characteristics, grades, interests and university majors, and preprocesses the original college entrance examination data through Spark's data processing function. It includes data cleaning, deduplication, filling in missing values and other operations to ensure the quality and accuracy of data. At the same time, through data transformation, the original data is converted into a format suitable for model training, providing data support for subsequent model training. Through feature selection and parameter tuning of feature engineering, the non-numerical data in the college entrance examination data are transformed to optimize the performance of the model and improve the accuracy of recommendations to meet the needs of model training. The trained model can predict the universities and majors that candidates are suitable for applying for based on their information.
Finally, the recommendation results are displayed through the web interface. The interface design is simple and clear, and it is easy to operate. Candidates can input their college entrance examination scores, interests and other information, and the system will recommend them according to the trained model.
Key words:Spark;College Entrance Examination Volume Filling;Referral system
1.1 研究背景
高考是中国高中毕业生升入大学的主要途径,考试成绩决定了学生的录取排名和学校专业的选择。由于高校众多、专业繁杂,学生和家长在填报志愿时常面临困扰和选择困难。为了给考生和家长提供平台可以让其客观的根据自身情况填报以及当下发展情况,进行推荐填报。而大多数考生都是找志愿填报老师,完全听取其意见,自己没有相关了解以及个人兴趣。针对此问题,设计本系统可以更好的注重于个人兴趣以及院校水平、专业前景客观推荐。本文将推荐系统与大数据处理框架Spark相结合,帮助考生解决高考志愿填报环节的志愿选择问题。
1.2 国内外现状
1.2.1 国外研究现状
国外的研究主要关注学生个性化需求和多样化的招生制度。一些国际知名企业,如Google、Facebook等,已经开发出了一些先进的大规模推荐系统,涵盖了视频推荐、广告推荐等多个领域。这些推荐系统通常基于分布式计算框架,能够高效地处理大规模数据,提供更加准确和个性化的推荐建议[1]。从大量信息中挖掘出有用信息,为用户进行精准推荐,有效解决了个人用户的“信息过载”问题。同时,推荐系统在消费领域发挥着不可或缺的作用,推动了企业进行数据营销,给企业和社会带来了较高的经济效益[2]。
1.2.2 国内研究现状
目前多家互联网公司已经推出了高考志愿填报模拟系统,比如高考网,中国教育在线—高考频道等。考生可以输入自己的高考分数、所在省份,系统会搜索近几年各院校各专业在该省历年录取分数线与本省当年批次分数线差值低于考生这一年与本省批次线差值的学校和专业[3]。
随着高考改革的不断深入,越来越多的学者和研究机构开始关注高考志愿填报推荐系统的研究和开发。基于Spark的高考志愿填报推荐系统作为一种分布式计算框架,能够高效地处理大规模的高考数据,提供更加准确和个性化的推荐建议。高校和科研机构已经开始进行相关研究和实验,取得了一些初步的成果。同时,一些互联网企业也纷纷涉足高考志愿填报领域,推出了一系列基于大数据分析的志愿填报辅助工具和平台[4]。
。
1.3 主要研究内容
将推荐系统与大数据处理框架Spark相结合,帮助考生志愿选择问题。设计高考志愿推荐的Web前端界面。其中包括用户注册界面、用户登录界面、志愿推荐结果展示界面以及相关高考信息(高校信息与专业信息)的浏览界面。并设计高考志愿场景下的志愿推荐引擎。首先,通过阅读大量高考志愿填报文献,选取合适的用户属性,计算相似性,建立相似矩阵,寻找相似用户;其次,分析几种最常见的推荐算法,结合高考志愿填报的真实场景选择协同过滤算法作为本系统的推荐算法;最后通过Spark计算框架的并行化计算方式生成最终的推荐列表[5]。
1.4 论文框架结构
本文将分为七个章节介绍系统的开发设计过程,全面的向读者介绍从建立课题到理论分析再到完成实现所调查的市场现状,使用的开发技术,创建的搭建环境,制作的编程代码等,使读者能够通过本论文对所开发的系统有所了解。
第一章,绪论。在绪论章节中,将介绍研究背景、国内外现状、主要研究内容以及论文的框架结构。
第二章,相关开发技术与理论。在相关开发技术与理论章节中,将介绍项目所涉及到的相关开发技术与理论。
第三章,系统分析。在系统分析章节中,对本次开发的软件系统从不同方面、不同角度进行可行性分析、功能分析、用例图建模。
第四章,系统设计。在系统设计章节中,对系统的功能模块、概念模型、数据库等进行设计。
第五章,系统实现。在系统实现章节中,对系统的核心功能进行截图展示介绍。
第2章 相关开发技术与理论
2.1 前端技术
Vue是一个渐进式JavaScript框架,Vue具有简洁易学、组件化等特点,使用它可以快速地构建前端界面,且以组件化的方式构建用户界面,将复杂的UI拆分为独立的、可重用的组件,每个组件有自己的数据和逻辑,提高了代码的可维护性和可重用性[6]。它采用MVVM设计模式,通过数据驱动和组件化的方式来构建用户界面。并且采用了类似HTML的模板语法,可以简洁地描述UI的结构和行为。模板语法支持绑定表达式、条件渲染、循环渲染等常见的操作,具有高效的虚拟DOM渲染机制和优化的更新策略,使得应用程序具有出色的性能[7]。
是一个Vue UI库,提供大量的UI组件和开发工具,可以帮助我们快速构建美观、易用的Web应用程序。它提供了丰富的组件和工具,可以帮助开发人员快速构建现代化、高效的Web界面。Element-Plus提供了简单易用的API,可以方便地在Vue应用中集成和使用。同时,也提供了丰富的主题和样式配置选项,支持个性化的主题定制化 [8]。
2.2 后端技术
PySpark是Apache Spark的Python版本,适用于处理大规模数据和进行复杂的数据分析任务。它结合了Python的简洁性和Spark的性能优势,是Apache Spark的Python API。提供了丰富的功能,包括数据处理、机器学习、图计算等。它能够处理各种数据源,PySpark提供了丰富的转换操作和动作操作可以灵活地对数据进行处理和分析 [9]。
Django是一款基于Python的Web应用程序开发框架,具有高度的可重用性、可扩展性和灵活性,被广泛地应用于Web开发领域。Django被用于编写后端API接口和管理界面,在该系统中,Django被用于编写后端API接口和管理界面[8]。提供了强大的对象关系映射(ORM)支持,可以轻松地将数据存储到数据库中,并且可以使用Python类来表示数据库表格。这使得开发人员可以专注于业务逻辑而不是低级别的数据访问代码[9]。
Scrapy是一个Python编写的高效的网络爬虫框架,支持数据抓取和处理、自动化测试等功能。使用XPath或CSS选择器来定义数据提取规则,可以灵活地从HTML或XML文档中提取所需的数据。可以根据不同的网页结构和数据格式来编写提取规则[10]。并且Scrapy自动处理请求的发送和响应的接收,开发人员只需定义爬取规则和数据处理逻辑即可。它还支持请求的优先级、重试机制和动态代理等功能,可实现更加灵活和智能的请求管理。可用于数据挖掘、搜索引擎索引、数据监测还是网站自动化测试 [11]。
协同过滤算法是一种基于用户行为数据的推荐算法,通过分析用户的历史行为数据来计算用户之间的相似度,然后根据相似用户或相似物品的评价来预测用户对未知物品的喜好程度。这种算法能够利用兴趣相投、拥有共同经验的群体的喜好来推荐用户感兴趣的信息。
通过分析用户的历史行为数据,找到与目标用户行为相似的其他用户,从而推荐目标用户可能感兴趣的物品。可以处理任何类型的物品和用户行为,提供高度个性化的推荐,但也存在数据稀疏性、冷启动问题和可扩展性等方面的挑战。
具体步骤:计算用户之间的相似度,如皮尔逊相关系数、余弦相似度等。找到与目标用户相似度最高的K个用户,然后综合这些用户对某个物品的评分来预测目标用户对该物品的评分或偏好,最后推荐目标用户评分最高的N个物品。
将物品的内容信息和用户行为数据结合起来进行推荐。在电子商务、搜索引擎和广告推送等领域有着广泛的应用,能够优化搜索结果,提高用户搜索体验。
具体步骤:它侧重于物品的内容信息,如商品名称、描述、分类等,同时结合用户行为数据来分析用户的行为模式,发现用户的偏好和兴趣。通过分析这些信息,算法可以自动计算出用户的兴趣模型,并推荐与之匹配的相关物品。
3.1 需求可行性分析
可行性分析是对项目进行全面评估的关键步骤,确保所提方案不仅技术上可实现,而且经济合理,同时在操作层面具有可行性。通过可行性分析判断系统是否可以达到预定的目标。通过对系统需求、技术环境、资源限制等方面的深入研究,我们可以预测系统可能面临的挑战和潜在问题。
可行性分析为系统开发提供可靠的解决方案。通过对技术、经济和社会等方面的综合考量,我们可以确定最佳的实施方案,确保项目能够高效、稳定地运行。这有助于降低开发过程中的风险,提高项目的成功率。有助于提升项目的整体质量。通过全面评估项目的各个方面,我们可以发现潜在的问题并进行优化。
3.1.1技术可行性
硬件设备和开发工具是可行和可获得的。使用Spark的分布式计算能力,通过并行处理加速数据处理过程,提高系统性能,减少填报时间和工作量。
3.1.2用户可行性
需要明确目标用户群体的具体需求。了解用户对系统的期望功能、性能要求、使用场景等,以便在设计系统时能够充分满足这些需求。
通过分析用户的行为模式、使用问题,可以优化系统的操作流程、界面设计和交互方式。
3.2 功能性需求分析
功能性需求分析是系统设计的基础和前提,进一步确定系统的功能模块和具体实现方式。它关注系统应具有的特定功能,以确保软件或系统能够按照预定目标正常运行。有助于确保系统能够按照用户需求正常运行,实现预期目标。本系统利用大数据处理和分析技术,结合考生的个人成绩、兴趣偏好、职业规划等因素,以及高校招生信息、专业特点等数据进行综合分析和推荐。
系统主要有两种类型的用户:普通用户和管理员。普通用户可在系统页面进行注册、登录的相关操作,成功完成此操作后,可以进入功能页面,进行专业,院校,个性化智能推荐的浏览与查询,个人信息查看、个人信息修改、用户退出等功能;管理员可进入系统后台,实现高校信息管理以及用户信息管理。
非功能性需求分析
1.性能需求:它涉及到软件的响应时间、吞吐量、资源利用率等关键指标。在搜索信息时能够迅速得到结果,这就要求软件具有高效的搜索算法和足够的处理能力。此外,随着用户数量的增长,平台需要能够处理更多的并发请求,保持稳定的运行状态。
2.可靠性需求:关注软件在运行过程中避免故障和错误的能力。这包括软件的成熟性、容错性、可恢复性等方面。
3.安全性需求:随着网络安全问题的日益严重,软件的安全性越来越受到关注。安全性需求涉及到用户数据的保护、防止恶意攻击等方面。
4.易用性需求:关注软件的用户界面和交互设计。一个易于使用的软件可以提高用户满意度和工作效率。易用性需求包括软件的界面设计、操作流程、提示信息等方面。例如,对于一个新手用户来说,一个直观的界面和简单的操作流程可以帮助他们更快地掌握软件的使用方法。
- 系统设计
4.1 系统功能设计
推荐系统主要针对于用户可以通过本系统来进行信息检索,专业检索,高校推荐等。系统根据用户登陆时候选择的不同的省份,名次,期望院校,期望专业,学习类别来进行智能化推荐。
本系统实现功能有:
(1)查询高校:用户可以查询各省市的高校信息,包括高校名称、地址、招生计划等。
(2)查询专业:用户可以查询各省市的专业信息,包括专业名称、招生计划等。
(3)个性化推荐院校:根据用户的个人偏好,系统可以为用户推荐合适的高校和专业,以便用户更好地选择高校和专业。
(4)志愿高校推荐:根据用户实际信息成绩、地区、学科等实现院校推荐,以及院校的专业推荐。
第5章 数据分析与系统实现
5.1 前端系统实现
主要采用Vue + Element-UI的技术栈,设计登录页、信息输入页、推荐结果展示页等页面的布局和样式。并且使用Vue的响应式数据绑定和事件处理机制来实现页面与用户的交互。在Vue组件中使用Axios发起HTTP请求到后端的API接口。然后监听用户输入,如当用户填写完高考成绩和兴趣偏好后,调用后端的推荐结果获取接口。接收后端返回的推荐结果,并将其解析为前端可展示的数据格式。
数据库实现
通过数据库,可以对数据进行新增、查询、更新、删除等操作,从而实现对数据的有效管理,并且实现数据的整合与共享。数据库可以优化数据管理和处理,提供更快、更准确、更可靠、更安全的数据管理功能。通过索引,可以提高查询效率并解决多并发请求等问题。同时,利用数据挖掘、数据分析等技术,深度分析数据,提取有效信息。本系统的数据库表,如图所示。
1.用户信息表。
字段名称 | 类型 | 可否为空 | 主键 | 默认值 | 中文名称 |
User-ID | Varchar(20) | YES | PRI | Null | 用户ID |
User-name | Varchar(20) | YES | Null | 用户名 | |
password | Varchar(20) | YES | Null | 密码 | |
sex | Varchar(10) | YES | Null | 性别 | |
age | Int(10) | YES | Null | 年龄 |
2.高校信息表。
字段名称 | 类型 | 可否为空 | 主键 | 默认值 | 中文名称 |
Shcool-ID | Varchar(20) | YES | PRI | Null | 高校ID |
School-name | Varchar(20) | YES | Null | 高校名称 | |
address | Varchar(20) | YES | Null | 地址 | |
subject | Varchar(20) | YES | Null | 专业 |
3.专业信息表。
字段名称 | 类型 | 可否为空 | 主键 | 默认值 | 中文名称 |
Subject-ID | Varchar(20) | YES | PRI | Null | 专业ID |
Subject-name | Varchar(20) | YES | Null | 专业名称 | |
system | Int(20) | YES | Null | 学制 | |
fee | float(20) | YES | Null | 学费 |
4.推荐信息表。
字段名称 | 类型 | 可否为空 | 主键 | 默认值 | 中文名称 |
User-ID | Varchar(20) | YES | PRI | Null | 用户ID |
re-school | Varchar(20) | YES | Null | 推荐高校 | |
re-subject | Varchar(20) | YES | Null | 推荐专业 | |
re-time | datetime | YES | Null | 推荐时间 |
5.3 后端系统实现
使用Python语言,Django框架进行开发,Spark构建推荐模型,运用协同过滤算法实现推荐功能以及相关分析。实现信息收集、数据清洗、数据分析、模型训练、模型预测。
第6章 系统测试
6.1 系统测试目的与目标
系统测试的目的是要证明开发过程是错误的,尽可能多的发现程序中存在的bug,而不是证明程序没有错[15]。一个好的测试案例是指它可以发现目前尚未发现的错误;一个成功的测试是指它能发现迄今尚未发现的测试。这个观点提醒我们,测试应该着重找出错误,而不是证明软件的正确功能。
首先,测试不仅仅是为了找出错误。通过分析错误的原因和分布特征,项目经理可以更有效地识别和改进他们目前使用的软件系统中的缺陷。同时,这种分析也可以帮助我们设计有针对性的检测方法,提高测试的有效性。
6.2 系统测试方法
测试方法中较为常用的测试方法是白盒测试和黑盒测试。白盒测试经常称为结构测试,在系统运行的整个过程中,通过输入逻辑性较强的测试和验证程序来实现准确无误的工作。黑盒测试通常称为性能测试,它通常是一种在程序接口进行测试的方法,通常包括接收和输出有关程序功能和使用方法的数据。它还可以输出正确的信息,同时确保与外部信息的完全连接。
6.3 系统测试用例
对该系统的测试主要是登录功能、旅游景点模块、预约模块以及管理员模块。
6.3.1 登录功能测试
以下是对登录功能的测试,该测试主要是为了检测用户输入的用户名、密码以及拼图验证是否与数据库中的数据匹配,若输入错误将无法进入系统。测试结果如下表6.1。
表6.1 登录功能测试表
功能项6 | 数据6 | 预期结果6 | 最终结果 |
用户登录 | 用户名:lzh12 密码:123456 完成拼图验证 | 用户不存在 | 用户不存在 |
用户名:zytyy 密码:99988 完成拼图验证 | 提示用户名或密码错误 | 提示用户名或密码错误 | |
用户名:zytyy 密码:123456 未完成拼图验证 | 验证失败 | 验证失败 | |
用户名:zytyy 密码:123456 完成拼图验证 | 登录成功 | 登录成功 | |
管理员登录 | 用户名:admin 密码:1234 完成拼图验证 | 提示用户名或密码错误 | 提示用户名或密码错误 |
用户名:admin 密码:asd123 完成拼图验证 | 登录成功 | 登录成功 | |
用户名:admin 密码:asd123 未完成拼图验证 | 验证失败 | 验证失败 |
6.3.2 旅游景点模块测试
旅游景点模块主要测试的功能是查询旅游景点、收藏景点、购买门票、评论景点。测试结果如下表6.2。
表6.2 旅游景点模块测试表
功能项a | 数据a | 预期结果a | 最终结果a |
查询旅游景点 | 输入:南山 | 显示名称含南山的景点 | 显示名称含南山的景点 |
输入:吉阳区 | 显示吉阳区的旅游景点 | 显示吉阳区的旅游景点 | |
收藏景点 | 在景点详情页点击收藏 | 收藏成功 | 收藏成功 |
购买门票 | 在景点详情页点击购买 | 购买成功 | 购买成功 |
评论景点 | 在评论区发布评论 | 评论成功 | 评论成功 |
6.3.3 预约模块测试
预约模块主要测试的功能是预约酒店、预约导游。测试结果如下表6.3。
表6.3 预约模块测试表
功能项a | 数据a | 预期结果a | 最终结果a |
预约 | 预约怡庭酒店 | 预约成功 | 预约成功 |
预约苏明导游 | 预约成功 | 预约成功 |
6.3.4 管理员模块测试
管理员模块主要测试轮播图管理、公告管理、用户管理、资讯分类管理、旅游景点管理、旅游路线管理、留言管理等功能模块。测试结果如下表6.4。
表6.4 管理员模块测试表
功能项a | 数据a | 预期结果a | 最终结果a |
轮播图管理 | 添加轮播图 | 添加成功 | 添加成功 |
修改轮播图 删除轮播图 | 修改成功 删除成功 | 修改成功 删除成功 | |
公告管理 | 添加公告信息 修改公告信息 删除公告信息 | 添加成功 修改成功 删除成功 | 添加成功 修改成功 删除成功 |
用户管理 | 修改用户头像 删除用户:zz用户 | 修改成功 删除成功 | 修改成功 删除成功 |
资讯分类管理 | 资讯分类添加:旅游 删除资讯分类:创新 | 添加成功 删除成功 | 添加成功 删除成功 |
旅游路线管理 | 添加一日游路线 删除两日游路线 | 添加成功 删除成功 | 添加成功 删除成功 |
留言管理 | 删除留言1 回复留言:已读 | 删除成功 回复成功 | 删除成功 回复成功 |
6.4 测试总结
测试是根据系统的运行过程,在认为系统运行正常的情况下,找到一套能够打破系统的实验。通过对系统的功能模块进行测试,结果显示所有功能都能正常运行,证明该系统满足了用户的需求,满足了系统的正常运行。
第7章 总结与展望
7.1 总结
本文旨在构建一个基于Spark的高考志愿填报推荐系统,通过运用大数据技术和协同过滤算法,为学生提供更加精准、个性化的志愿填报建议。系统采用Python语言和Django框架进行开发,利用Spark集群进行大规模数据的处理和模型训练。随着大数据和人工智能技术的不断发展,高考志愿填报推荐系统将在未来发挥更加重要的作用。我们将继续优化算法、扩展数据集、提升系统性能,为更多学生提供更加优质、高效的志愿填报服务。但本人能力有限,该系统功能不够完善,模型算法还需优化,需要进一步查阅资料和文献进行补充完善。
7.2 展望
基于Spark的高考志愿填报推荐系统的毕业设计是一个富有挑战性和实际意义的项目。目前使用的是基于协同过滤、内容推荐等传统的推荐算法,时间较短,相关知识储备不足,该系统成果不是很成熟,展望未来,可以从以下几个方面对该系统进行进一步的优化和拓展:
1.丰富与优化数据源,可以考虑加入更多维度的数据,如学校的师资力量、科研实力、就业率、专业设置、学费等,以及考生的兴趣爱好、职业规划等信息,使推荐结果更加全面和个性化。
2.引入深度学习、强化学习等先进技术,结合Spark的分布式计算能力,提高推荐的准确性和效率。同时,可以考虑设计一种混合推荐策略,结合多种推荐算法的优点,为考生提供更加精准的志愿填报建议。
3.用户界面的优化与交互性的提升,设计一个直观、易用的用户界面,方便考生和家长使用系统。同时,可以提供丰富的交互功能,如在线咨询、志愿填报模拟等,增强用户体验。
4.隐私保护与安全性,在处理考生个人信息时,需要严格遵守相关法律法规,确保数据的隐私性和安全性。可以采用数据加密、访问控制等技术手段,防止数据泄露和滥用。
综上所述,基于Spark的高考志愿填报推荐系统的毕业设计具有广阔的发展前景和实际应用价值。通过不断优化和拓展系统功能,可以为考生提供更加精准、个性化的志愿填报建议,帮助他们更好地规划未来。
参考文献
- 韩思瑞.高考志愿个性化推荐相关算法研究及系统设计[D].西安理工大学,2023.
- 杨辉,黄家昌.基于Vue的页面设计器实现与应用[J].现代信息科技,2023,7(10):99-101.
[3] 陈澜涛.基于机器学习的推荐算法研究及分布式实现[D].西安电子科技大学,2021.
[4] 高丽丽,樊彩虹.基于大数据的高考志愿填报推荐系统的设计[J].电子技术与软件工程,2021(22):213-215.
[5] 于超.高考志愿与录取的匹配度分析与优化技术研究[D].青岛科技大学,2019.
[6] 宋小烜.基于深度特征提取的个性化高考志愿推荐系统研究[D].西北大学,2023.
[7] 黄必栋.基于PySpark和Pandas融合的大数据时序分析方法[J].电子技术与软件工程,2022(01):201-204.
[8] 孙瑜.基于Scrapy框架的网络爬虫系统的设计与实现[D].北京交通大学,2020.
[9] 文小月. 基于Spark平台的协同过滤推荐算法研究[D].云南财经大学,2023.
[10] 郭鹤楠.基于Django和Python技术的网站设计与实现[J].数字通信世界,2023(06):60-62.
[11] 高坤.基于MVVM模式的前端框架的渲染优化研究与实现[D].西南科技大学,2023.
[12] 崔欢欢.基于Python的网络爬虫技术研究[J].信息记录材料,2023,24(06):172-174.
[13] 白俊杰.基于混合推荐的高考志愿推荐系统的设计与实现[D].内蒙古大学,2023.
[14] 刘启伟. 基于Vue.js框架的Web前端开发工具的设计与实现[D].北京邮电大学,2022.
[15] 钱诗佳,陈雨龙,李全.基于Django的软件推荐平台设计[J].信息技术与信息化,2021(10):81-83.
致 谢
四年的大学生活,如白驹过隙,转眼即逝。而在这段宝贵的时光里,我得到了许多人的帮助与支持,使得我能够顺利完成这篇毕业论文。在此,我要向他们表达我最真挚的谢意。
首先,我要感谢我的导师。从论文选题、资料收集、实验设计到论文撰写,每一步都离不开您的悉心指导。您严谨的学术态度、深厚的学术造诣以及对学生的无私关怀,让我深受启发。在论文写作过程中,您多次为我答疑解惑,提供了宝贵的意见和建议。正是您的耐心指导,让我能够克服各种困难,顺利完成论文。在此,我向您表示衷心的感谢和崇高的敬意。
其次,我要感谢我的家人。在我求学的道路上,他们始终是我最坚实的后盾。他们的关爱、支持和鼓励,让我在面对挫折时能够保持信心,勇往直前。他们的付出和奉献,让我深感愧疚,也激励我更加努力地学习,以回报他们的养育之恩。
此外,我还要感谢我的同学们和朋友们。在论文写作过程中,我们相互鼓励、互相帮助,共同进步。我们一起度过了许多难忘的时光,留下了许多美好的回忆。你们的陪伴和支持,让我的大学生活更加丰富多彩。
同时,我要感谢学校提供的优质教育资源和良好的学习环境。学校的图书馆、实验室以及各类学术活动,为我的论文写作提供了极大的便利。在这里,我能够接触到前沿的学术动态,拓宽视野,增长见识。
最后,我要感谢所有在论文写作过程中给予我帮助和支持的人。无论是为我提供实验器材的老师,还是为我解答学术问题的学长学姐,都对我的论文写作起到了重要作用。你们的帮助让我更加深刻地体会到了团队合作的力量和学术研究的价值。
在即将告别大学生活之际,我感慨良多。这四年里,我收获了知识、友谊和成长。我深知,这一切都离不开身边人的关心和支持。在未来的日子里,我将继续努力,不断提升自己的学术水平和综合素质,为实现自己的人生目标而奋斗。
再次感谢所有关心和支持我的人,愿你们在未来的日子里一切顺利,幸福安康!
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻