计算机毕业设计Python音乐推荐系统 知识图谱 音乐数据分析可视化 音乐爬虫 音乐大数据 大数据毕业设计

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。

收藏点赞不迷路  关注作者有好处

                                         文末获取源码

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

开题报告

题目:Python音乐推荐系统:知识图谱与音乐数据分析可视化

一、课题背景与研究意义

随着互联网技术的迅猛发展,音乐资源在网络上呈现爆炸式增长。大型音乐门户类网站的歌曲库规模往往包含上千万首歌曲,这些歌曲被细分为不同的语种、流派、年代、主题、心情和场景等。然而,对于系统中的每一位音乐用户来说,他们不可能收听曲库内的每一首歌,很多时候用户的需求是模糊而具体的,如“一首或几首好听的歌曲”。因此,如何根据用户在系统中产生的行为信息,从庞大的歌曲库中挖掘出用户可能感兴趣的音乐,成为了一个亟待解决的问题。

个性化音乐推荐系统应运而生,它通过综合考虑用户偏好、时间、地点、环境等复杂特征,从海量歌曲库中精准地挑选出适合当前用户聆听的个性化音乐。然而,国内的音乐推荐技术发展相对缓慢,大多数音乐网站的技术不够成熟,大数据成分较少。因此,开发一个基于知识图谱的音乐推荐系统,不仅能够提升用户体验,还能推动音乐产业的发展。

知识图谱作为一种结构化的知识表示方式,能够清晰地展示实体之间的关系,非常适合用于音乐领域的推荐系统。通过构建音乐知识图谱,可以挖掘歌曲、歌手、流派等实体之间的关联,为推荐算法提供更丰富的信息。同时,结合音乐数据分析可视化技术,可以直观地展示用户行为、音乐热度等数据,为系统优化和用户体验提升提供有力支持。

二、研究目标与内容

研究目标

  1. 构建一个基于Python的音乐推荐系统,实现个性化音乐推荐功能。
  2. 利用知识图谱技术,挖掘音乐实体之间的关系,提升推荐算法的准确性。
  3. 实现音乐数据分析可视化,展示用户行为、音乐热度等数据。

研究内容

  1. 数据采集与预处理:使用Python爬虫工具采集网易云音乐等网站的音乐数据,包括歌曲信息、用户听歌记录、评价等,并进行数据清洗和预处理。
  2. 知识图谱构建:根据采集到的数据,构建音乐知识图谱,包括歌曲、歌手、流派等实体以及它们之间的关系。利用Neo4j等图数据库工具进行存储和管理。
  3. 推荐算法设计与实现:结合协同过滤算法、深度学习等算法,设计并实现个性化音乐推荐算法。利用Spark的MLlib库进行机器学习模型的训练和预测。
  4. 系统开发与测试:使用Django或Spring Boot进行后端开发,Vue.js进行前端开发,实现在线音乐推荐系统。进行系统测试和性能优化,确保系统的稳定性和可靠性。
  5. 可视化大屏开发:使用ECharts等工具开发音乐数据分析可视化大屏,展示用户行为分析、音乐热度分析等数据。

三、研究方法与技术路线

研究方法

  1. 文献调研法:查阅国内外关于音乐推荐系统、知识图谱构建及可视化方面的相关文献,了解现有的研究成果、技术方法以及存在的问题,为本研究提供理论基础和参考依据。
  2. 软件工程方法:按照软件工程的规范流程进行音乐推荐系统的设计与开发,包括需求分析、系统设计、编码实现、测试等阶段,确保系统的可靠性和可维护性。
  3. 案例研究法:选取一些知名音乐平台(如网易云音乐、酷狗音乐等)的音乐推荐系统作为案例进行深入分析,学习其成功经验和不足之处,为构建本研究的音乐推荐系统提供借鉴。

技术路线

  1. 数据采集:使用Selenium自动化Python爬虫工具采集网易云音乐等数据。
  2. 数据清洗与预处理:使用pandas和numpy对数据进行清洗和预处理,生成最终的CSV文件并上传到HDFS。
  3. 知识图谱构建:使用Neo4j构建音乐知识图谱,并导入处理后的数据。
  4. 推荐算法实现:使用Spark的MLlib库进行模型训练和预测,实现个性化音乐推荐算法。
  5. 系统开发与部署:使用Django或Spring Boot和Vue.js进行前后端开发,并使用Tomcat模拟服务器进行部署。
  6. 可视化大屏开发:使用ECharts等工具开发音乐数据分析可视化大屏。

四、研究计划与进度安排

研究计划

  1. 第1-2周:搜集查阅资料,完成项目调研,完成开题报告。
  2. 第3-4周:进行系统需求分析、功能设计、开发环境准备和论文部分初稿内容撰写。
  3. 第5周:进行数据库设计、界面设计以及论文初稿内容的撰写。
  4. 第6-11周:进行系统模块的代码编写和论文初稿内容的撰写。
  5. 第12-13周:进行系统测试,撰写此部分论文初稿。
  6. 第14-15周:修改与完善论文,准备答辩PPT及项目演示视频,参加答辩。

五、预期成果与创新点

预期成果

  1. 成功开发一个基于Python的音乐推荐系统,实现个性化音乐推荐功能。
  2. 构建音乐知识图谱,提升推荐算法的准确性。
  3. 实现音乐数据分析可视化,为系统优化和用户体验提升提供有力支持。

创新点

  1. 结合知识图谱技术进行音乐推荐,挖掘音乐实体之间的关系,提升推荐算法的准确性。
  2. 实现音乐数据分析可视化,直观地展示用户行为、音乐热度等数据,为系统优化提供有力支持。

六、结论

本研究旨在开发一个基于Python的音乐推荐系统,通过综合运用知识图谱、大数据分析和可视化技术,实现个性化音乐推荐,提升用户体验和满意度。本研究不仅具有重要的学术意义,还能够为音乐产业的发展提供有力支持。通过不断努力和创新,我们期待能够取得预期的研究成果,并为未来的音乐推荐系统研究提供有益的参考和借鉴。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值