计算机毕业设计Hadoop+PySpark+Scrapy爬虫考研分数线预测 考研院校推荐系统 考研推荐系统 考研(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。

收藏点赞不迷路  关注作者有好处

                                         文末获取源码

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

Hadoop+PySpark+Scrapy爬虫考研分数线预测与考研院校推荐系统

摘要: 本论文旨在构建一个基于Hadoop、PySpark和Scrapy爬虫技术的考研分数线预测与考研院校推荐系统。通过Scrapy爬虫采集考研相关数据,利用Hadoop进行数据存储,借助PySpark进行数据处理和分析,采用机器学习算法实现分数线预测和院校推荐。实验结果表明,该系统能够为考生提供较为准确的分数线预测和个性化的院校推荐,具有一定的实用价值。

关键词:Hadoop;PySpark;Scrapy爬虫;考研分数线预测;考研院校推荐系统

一、引言

随着高等教育的发展和就业竞争的加剧,考研成为众多大学生提升自身竞争力的重要途径。然而,考研过程中的信息获取和决策对于考生来说至关重要。考生需要了解各院校的考研分数线,以便合理评估自己的录取可能性;同时,还需要根据自己的专业背景、兴趣爱好和未来发展方向,选择合适的考研院校。因此,开发一个考研分数线预测与考研院校推荐系统具有重要的现实意义。

Hadoop作为大数据存储与处理框架,能够处理海量的考研数据;PySpark提供高效的分布式计算能力,便于进行数据分析和建模;Scrapy是强大的网络爬虫工具,可用于采集考研相关的数据。将三者结合构建考研分数线预测与院校推荐系统,能够充分利用各自的优势,提高系统的性能和准确性。

二、相关技术概述

(一)Hadoop

Hadoop是一个开源的分布式计算框架,主要由HDFS(Hadoop Distributed File System)和MapReduce两部分组成。HDFS具有高可靠性、高扩展性和高容错性,能够存储海量的数据;MapReduce是一种编程模型,用于处理和生成大规模数据集。通过Hadoop,可以实现对考研数据的分布式存储和处理,提高数据处理的效率。

(二)PySpark

PySpark是Apache Spark的Python API,继承了Spark的高效内存计算和分布式计算能力。它支持多种数据处理操作,如数据清洗、特征提取、模型训练等,并且与机器学习库(如MLlib)集成良好,能够方便地实现各种机器学习算法。在考研数据分析中,PySpark可以快速处理大规模数据,提取有价值的信息,为分数线预测和院校推荐提供支持。

(三)Scrapy爬虫

Scrapy是一个开源的Python爬虫框架,支持数据抓取和处理。它具有高效、灵活、可扩展等特点,能够从互联网上快速抓取考研相关的数据,如各高校研究生院官网的招生信息、考研论坛的考生讨论等。Scrapy还支持数据清洗和格式化操作,可以将抓取到的数据转换成适合后续分析和处理的格式。

三、系统设计

(一)系统架构

本系统采用分布式架构,主要包括数据采集层、数据存储层、数据处理层、模型训练层和应用层。

  1. 数据采集层:利用Scrapy爬虫从研招网、各高校研究生院官网等目标网站抓取考研相关数据,如历年分数线、招生计划、报录比等。
  2. 数据存储层:使用Hadoop的HDFS存储采集到的海量数据,确保数据的安全性和可靠性。
  3. 数据处理层:利用PySpark对存储在HDFS中的数据进行清洗、预处理和特征提取等操作,为模型训练提供高质量的数据。
  4. 模型训练层:采用机器学习算法,如线性回归、决策树、随机森林等,对处理后的数据进行训练,构建考研分数线预测模型和院校推荐模型。
  5. 应用层:为用户提供Web界面,实现数据查询、分数线预测和院校推荐等功能。

(二)功能模块

  1. 数据采集模块:负责设计并实现Scrapy爬虫程序,设置合理的爬取策略和反爬机制应对措施,确保数据的稳定性和可靠性。
  2. 数据存储模块:配置Hadoop集群,实现数据的分布式存储和管理。
  3. 数据处理模块:利用PySpark进行数据清洗、去重、格式转换等操作,提取影响考研分数线和院校选择的关键特征。
  4. 模型训练模块:选择合适的机器学习算法,对处理后的数据进行训练和调优,提高模型的准确性和泛化能力。
  5. 预测与推荐模块:根据用户输入的信息,利用训练好的模型进行考研分数线预测和院校推荐,并将结果展示给用户。

四、系统实现

(一)数据采集

使用Scrapy框架编写爬虫程序,针对研招网、各高校研究生院官网等目标网站进行数据抓取。在爬虫程序中,设置请求头、代理IP等参数,模拟人类访问行为,避免被网站封禁。同时,对抓取到的数据进行初步处理,如去除HTML标签、提取关键信息等。

(二)数据存储

搭建Hadoop集群,配置HDFS和YARN等组件。将采集到的数据按照一定的格式存储到HDFS中,以便后续的数据处理和分析。

(三)数据处理

利用PySpark对存储在HDFS中的数据进行处理。首先,进行数据清洗,去除缺失值、异常值和重复数据。然后,进行特征提取,如提取报考人数、录取人数、专业热度、院校层次等特征。最后,对数据进行格式转换,将其转换为适合机器学习算法处理的格式。

(四)模型训练

选择线性回归、决策树、随机森林等机器学习算法,利用PySpark的MLlib库进行模型训练。通过交叉验证、网格搜索等方法对模型进行调优,提高模型的准确性和泛化能力。同时,采用集成学习方法,将多种算法进行组合,进一步提高预测性能。

(五)预测与推荐

根据用户输入的信息,如专业、成绩、地域等,利用训练好的模型进行考研分数线预测和院校推荐。将预测结果和推荐院校展示给用户,并提供详细的院校信息,如院校简介、专业设置、就业前景等。

五、实验与结果分析

(一)实验数据

采集了近五年的考研数据,包括各高校的历年分数线、招生计划、报录比等信息,共计[X]条数据。将数据按照一定比例划分为训练集和测试集,用于模型训练和评估。

(二)实验指标

采用均方根误差(RMSE)、平均绝对误差(MAE)和准确率等指标评估模型的性能。RMSE和MAE用于评估分数线预测模型的准确性,准确率用于评估院校推荐模型的性能。

(三)实验结果

经过多次实验和调优,得到了较为理想的实验结果。在分数线预测方面,RMSE和MAE分别达到了[具体数值1]和[具体数值2],表明模型具有较高的预测准确性。在院校推荐方面,准确率达到了[具体数值3],能够为考生提供较为准确的院校推荐。

(四)结果分析

通过对实验结果的分析,发现影响考研分数线和院校选择的因素较多,如报考人数、招生计划、专业热度、院校层次等。在模型训练过程中,合理选择特征和算法,并进行充分的调优,能够提高模型的性能。同时,数据的准确性和完整性对模型的预测结果也有重要影响。

六、结论与展望

(一)结论

本文构建了一个基于Hadoop、PySpark和Scrapy爬虫技术的考研分数线预测与考研院校推荐系统。通过实验结果表明,该系统能够为考生提供较为准确的分数线预测和个性化的院校推荐,具有一定的实用价值。

(二)展望

未来的研究可以进一步优化系统的性能和功能。例如,采用深度学习算法提高预测和推荐的准确性;结合自然语言处理技术,分析考生的个人陈述和推荐信,挖掘考生的潜在需求,提供更加个性化的推荐服务;加强数据的质量控制和安全管理,确保系统的稳定性和可靠性。

参考文献

  1. [相关Hadoop技术文档及研究论文]
  2. [PySpark官方文档及机器学习相关研究]
  3. [Scrapy爬虫框架文档及网络爬虫技术论文]
  4. [考研分数线预测与院校推荐相关研究文献]

以上论文仅供参考,你可以根据实际研究情况进行修改和完善,例如补充具体的实验数据、算法细节、代码示例等,以增强论文的学术性和实用性。同时,注意遵循学术规范,正确引用参考文献。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值