计算机毕业设计hadoop+spark+hive机票价格预测 机票推荐系统 航班延误预测 机票可视化大屏 Python爬虫 大数据毕业设计(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

开题报告:基于Hadoop+Spark+Hive的机票价格预测系统研究

一、研究背景与意义

1.1 研究背景
随着航空业的快速发展和消费者出行需求的增长,机票价格动态化、高频次调整成为常态。机票价格受季节、节假日、供需关系、航线竞争、促销活动等多重因素影响,传统静态定价模型难以捕捉复杂的市场波动。同时,海量历史数据(如航班信息、用户行为、宏观经济数据)的积累为数据驱动的价格预测提供了可能。然而,传统单机计算架构难以支撑TB级数据的实时分析与模型训练,亟需引入分布式大数据技术。

1.2 研究意义

  • 理论意义:探索多源异构数据融合下的机票价格预测模型,结合大数据技术与机器学习算法,提升预测精度与泛化能力。
  • 实践价值
    • 对消费者:提供动态价格预警,辅助最优购票决策。
    • 对航空公司:优化动态定价策略,平衡收益与上座率。
    • 对OTA平台:增强价格预测功能,提升用户粘性。

二、国内外研究现状

2.1 现有成果

  • 传统方法:基于时间序列(ARIMA、LSTM)或简单回归模型,但忽略多维度关联特征。
  • 大数据技术结合:部分研究尝试使用Spark处理航班数据,但多聚焦单一算法(如随机森林),未形成完整技术链。

2.2 研究空白

  • 缺乏基于Hadoop生态(HDFS存储+Spark计算+Hive分析)的全链路解决方案。
  • 未充分融合多源数据(如社交媒体舆情、竞品价格、用户搜索行为)。
  • 实时性不足,难以满足高频调价场景需求。

三、研究内容与创新点

3.1 研究内容

  1. 数据采集与存储
    • 利用爬虫技术(Scrapy)抓取OTA平台价格数据,结合航空公司API获取官方数据。
    • 通过Flume日志系统采集用户行为数据,存储至HDFS。
  2. 数据清洗与特征工程
    • 基于Spark处理缺失值、异常值,提取时间特征(如节假日标记)、航线竞争度(同航线航班数量)、用户搜索量等。
  3. 模型构建与优化
    • 对比GBDT、XGBoost、LSTM等算法在Spark MLlib上的性能。
    • 设计混合模型(如LSTM+GBDT)捕捉时序与非线性关系。
  4. 系统集成与可视化
    • 构建Hadoop+Spark+Hive架构,实现数据流水线自动化。
    • 通过Superset或Tableau展示预测结果与价格趋势。

3.2 创新点

  • 技术融合创新:首次将Hive用于机票价格特征分析,Spark用于分布式模型训练,形成“存储-分析-预测”闭环。
  • 特征设计创新:引入“价格弹性指数”(用户搜索量变化/价格变化)作为动态特征。
  • 实时性优化:利用Spark Structured Streaming实现小时级增量预测。

四、研究方法与技术路线

4.1 研究方法

  • 文献分析法:调研机票定价机制与大数据预测模型。
  • 实验对比法:控制变量对比不同算法在预测准确率(MAE、RMSE)与训练速度上的表现。
  • 系统实现法:基于Cloudera或Hortonworks平台搭建Hadoop生态,验证全链路可行性。

4.2 技术路线

 

mermaid

graph TD
A[数据源] --> B{采集模块}
B --> C[HDFS存储]
C --> D[Spark数据清洗]
D --> E[Hive特征分析]
E --> F[Spark MLlib模型训练]
F --> G[预测结果评估]
G --> H[可视化展示]

五、预期成果

  1. 理论成果:发表核心期刊论文1-2篇,提出基于多源异构数据的机票价格预测框架。
  2. 技术成果:开发一套日均处理亿级数据的预测系统,预测误差降低至5%以内。
  3. 应用成果:与航空公司或OTA平台合作试点,提升动态定价策略收益。

六、可行性分析

  • 技术可行性:Hadoop、Spark、Hive均为成熟技术,Spark MLlib支持分布式机器学习。
  • 数据可行性:可通过公开数据集(如Kaggle航班数据)与爬虫获取实验数据。
  • 团队基础:具备大数据开发与机器学习项目经验,熟悉Scala/Python开发。

七、研究计划

阶段时间任务
文献调研202X.01-02总结现有模型与技术,明确创新点
系统设计202X.03完成技术选型与架构图设计
数据采集202X.04实现爬虫与API对接,构建HDFS数据湖
模型开发与调优202X.05-08对比算法,优化特征,部署Spark训练任务
系统集成202X.09实现自动化流水线与可视化界面
实验与论文202X.10-12完成实验分析,撰写论文初稿

参考文献(示意性列举,需根据实际调研补充):
[1] 基于LSTM的机票价格预测模型研究. 《计算机科学》, 202X.
[2] Spark MLlib在航空收益管理中的应用. IEEE BigData, 202X.
[3] 大数据环境下的动态定价策略研究综述. 《管理科学学报》, 202X.

备注:以上框架可根据具体需求调整,如增加隐私计算模块(联邦学习)或强化可解释性研究。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值