温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
《Python知识图谱中华古诗词可视化与古诗词情感分析》开题报告
一、选题背景与意义
(一)选题背景
中华古诗词作为中华民族传统文化的瑰宝,蕴含着丰富的情感、历史、文化等信息。从先秦的《诗经》《楚辞》到唐宋的诗词巅峰,再到明清的诗词发展,古诗词见证了不同历史时期的社会风貌、文人情怀。然而,随着时代的发展,古诗词的传播和传承面临着一些挑战,传统的诗词学习方式往往局限于书本阅读和教师讲解,难以让读者全面、深入地理解古诗词的内涵。
在数字化时代,知识图谱和情感分析技术为古诗词的研究和传播提供了新的途径。知识图谱能够将古诗词中的实体(如诗人、诗词名称、意象等)及其关系进行结构化表示,形成一个直观的知识网络,帮助读者更好地理解诗词的背景和相关知识。情感分析技术则可以挖掘古诗词中蕴含的情感倾向,让读者更深刻地感受诗人的情感世界。Python作为一种功能强大且易于使用的编程语言,拥有丰富的库和工具,非常适合用于构建古诗词知识图谱和进行情感分析。
(二)选题意义
- 文化传承与教育意义:通过构建古诗词知识图谱和进行情感分析,将古诗词以更直观、生动的方式呈现出来,有助于激发人们对古诗词的兴趣,促进中华优秀传统文化的传承和弘扬。同时,该研究成果可以应用于古诗词教育领域,为教师提供更丰富的教学资源,帮助学生更好地理解和学习古诗词。
- 学术研究价值:本研究将知识图谱和情感分析技术应用于古诗词领域,为古诗词研究提供了新的方法和视角。通过对古诗词中实体关系和情感倾向的分析,可以深入挖掘古诗词的文化内涵和艺术价值,推动古诗词研究的进一步发展。
- 技术创新与应用意义:利用Python实现古诗词知识图谱的构建和情感分析,探索了自然语言处理、知识图谱构建等技术在传统文化领域的应用,具有一定的技术创新性。此外,研究成果还可以应用于文化旅游、数字人文等领域,为相关产业的发展提供支持。
二、研究目标与内容
(一)研究目标
- 构建一个包含丰富古诗词信息的中文知识图谱,涵盖诗人、诗词作品、创作背景、意象等实体及其关系,实现古诗词知识的结构化存储和可视化展示。
- 开发一套基于Python的古诗词情感分析模型,能够准确判断古诗词的情感倾向(如喜悦、悲伤、愤怒、思念等),并对情感强度进行量化评估。
- 将知识图谱和情感分析结果进行融合,通过可视化技术直观地展示古诗词的知识体系和情感特征,为用户提供更全面、深入的古诗词解读。
(二)研究内容
- 古诗词数据收集与预处理
- 数据收集:从网络诗词数据库(如古诗文网、诗词名句网等)、古籍文献、诗词选集等渠道收集古诗词文本数据,同时收集与古诗词相关的诗人信息、创作背景等元数据。
- 数据预处理:对收集到的古诗词文本进行清洗,去除噪声数据(如乱码、特殊符号等);进行分词、词性标注、命名实体识别等自然语言处理操作,为后续的知识图谱构建和情感分析做准备。
- 古诗词知识图谱构建
- 实体与关系抽取:采用规则匹配、机器学习(如条件随机场CRF)或深度学习(如BiLSTM-CRF)方法,从古诗词文本和元数据中抽取实体(如诗人、诗词名称、朝代、意象等)和关系(如诗人与诗词的创作关系、诗词中意象与情感的关联关系等)。
- 知识图谱存储:选择合适的知识图谱存储方式,如Neo4j图数据库,将抽取的实体和关系存储到数据库中,构建古诗词知识图谱。
- 知识图谱可视化:利用Python中的可视化库(如py2neo、NetworkX等)对知识图谱进行可视化展示,实现诗人关系网络、诗词意象图谱等可视化效果,方便用户浏览和查询。
- 古诗词情感分析
- 情感词典构建:收集和整理适用于古诗词的情感词典,包括积极情感词、消极情感词以及情感强度标注。同时,结合古诗词的特点,对情感词典进行扩展和优化,如添加古诗词中特有的情感词汇。
- 特征提取:从古诗词文本中提取情感分析的特征,包括情感词、程度副词、否定词等,以及基于词向量(如Word2Vec、GloVe)的语义特征。
- 情感分析模型构建:采用基于规则的方法、机器学习方法(如支持向量机SVM、朴素贝叶斯NB)或深度学习方法(如卷积神经网络CNN、循环神经网络RNN及其变体LSTM、GRU)构建古诗词情感分析模型,对古诗词的情感倾向和情感强度进行分类和评估。
- 模型评估与优化:使用标注好的古诗词情感数据集对构建的情感分析模型进行评估,采用准确率、召回率、F1值等指标衡量模型性能。根据评估结果,对模型进行优化和调整,提高情感分析的准确性。
- 知识图谱与情感分析结果融合与可视化
- 结果融合:将知识图谱中的实体关系信息与情感分析结果进行融合,例如在知识图谱中标注诗词的情感倾向,展示意象与情感的关联关系等。
- 综合可视化:利用Python的可视化技术,开发一个综合的可视化界面,将知识图谱和情感分析结果以直观、生动的方式呈现给用户。用户可以通过界面查询诗人信息、诗词内容、情感倾向等,还可以浏览知识图谱中的关系网络和情感分布情况。
三、研究方法与技术路线
(一)研究方法
- 文献研究法:查阅国内外关于知识图谱构建、情感分析、古诗词研究等方面的相关文献,了解该领域的研究现状和发展趋势,为本文的研究提供理论支持和方法借鉴。
- 实验研究法:通过实验对比不同的实体抽取、关系抽取、情感分析算法和模型在古诗词数据集上的性能,选择最优的算法和模型组合。同时,对可视化效果进行实验评估,不断优化可视化方案。
- 系统开发法:采用软件工程的方法,进行古诗词知识图谱构建与情感分析系统的需求分析、设计、开发和测试。按照模块化的思想,将系统划分为数据收集与预处理、知识图谱构建、情感分析、结果融合与可视化等模块,逐步实现各个模块的功能,并进行集成测试和系统测试。
(二)技术路线
- 数据收集与预处理阶段
- 搭建数据收集环境,编写网络爬虫程序从相关网站抓取古诗词数据,同时整理古籍文献和诗词选集中的数据。
- 对收集到的数据进行清洗和预处理,使用jieba等分词工具进行分词,结合CRF等模型进行命名实体识别。
- 知识图谱构建阶段
- 采用BiLSTM-CRF模型进行实体和关系抽取,将抽取结果存储到Neo4j图数据库中。
- 利用py2neo库对知识图谱进行可视化展示,实现诗人关系网络、诗词意象图谱等可视化效果。
- 情感分析阶段
- 构建适用于古诗词的情感词典,结合Word2Vec提取文本特征。
- 分别尝试基于规则、SVM、LSTM等方法的情感分析模型,使用标注数据集进行训练和评估,选择最优模型。
- 结果融合与可视化阶段
- 将知识图谱和情感分析结果进行融合,在知识图谱中添加情感标注。
- 使用PyQt5等框架开发可视化界面,集成知识图谱和情感分析结果的可视化展示功能。
四、研究计划与进度安排
(一)研究计划
- 第1 - 2周:查阅相关文献,了解古诗词知识图谱构建和情感分析的研究现状,确定研究选题和研究内容。
- 第3 - 4周:学习Python编程语言、自然语言处理技术、知识图谱构建方法和可视化技术,掌握相关的开发工具和库。
- 第5 - 6周:进行古诗词数据收集与预处理,搭建数据收集环境,编写爬虫程序,清洗和处理数据,完成分词和命名实体识别。
- 第7 - 8周:构建古诗词知识图谱,进行实体与关系抽取,选择存储方式并完成数据存储,实现知识图谱的可视化展示。
- 第9 - 10周:开展古诗词情感分析,构建情感词典,提取文本特征,选择合适的算法构建情感分析模型,并进行模型评估和优化。
- 第11 - 12周:将知识图谱和情感分析结果进行融合,设计综合可视化方案,开发可视化界面。
- 第13 - 14周:对系统进行全面的测试和评估,解决系统运行过程中出现的问题,优化系统性能。
- 第15 - 16周:总结研究成果,撰写毕业论文,进行论文修改和完善。
(二)进度安排
阶段 | 时间跨度 | 主要任务 |
---|---|---|
选题与文献调研 | 第1 - 2周 | 确定选题,查阅文献,撰写开题报告 |
技术学习与数据准备 | 第3 - 6周 | 学习相关技术,采集和预处理数据 |
知识图谱构建 | 第7 - 8周 | 完成实体与关系抽取,构建并可视化知识图谱 |
情感分析 | 第9 - 10周 | 构建情感词典,训练和优化情感分析模型 |
结果融合与可视化 | 第11 - 12周 | 融合知识图谱与情感分析结果,开发可视化界面 |
系统测试与优化 | 第13 - 14周 | 测试系统性能,解决出现的问题 |
论文撰写与总结 | 第15 - 16周 | 总结研究成果,撰写和修改毕业论文 |
五、预期成果
- 完成一篇高质量的毕业论文,详细阐述古诗词知识图谱构建与情感分析的研究过程、方法、模型实现和系统开发等内容,包括数据收集与预处理、知识图谱构建、情感分析、结果融合与可视化等方面的技术细节和实验结果。
- 搭建一个古诗词知识图谱构建与情感分析系统,用户可以通过该系统查询古诗词信息、浏览知识图谱、了解诗词情感倾向,实现古诗词知识的结构化存储、可视化展示和情感分析。
- 发表一篇与本研究相关的学术论文或申请一项软件著作权,展示研究成果,为古诗词研究和数字化传承做出贡献。
六、研究的创新点与可行性分析
(一)创新点
- 跨领域融合创新:将知识图谱和情感分析技术与中华古诗词这一传统文化领域相结合,为古诗词的研究和传播提供了新的思路和方法,实现了传统文化与现代技术的有机融合。
- 针对古诗词特点的优化:在情感词典构建和模型训练过程中,充分考虑古诗词的语言特点和文化内涵,对情感词典进行扩展和优化,选择适合古诗词情感分析的算法和模型,提高了情感分析的准确性。
- 综合可视化展示:将知识图谱和情感分析结果进行融合,通过可视化技术直观地展示古诗词的知识体系和情感特征,为用户提供了更全面、深入的古诗词解读体验。
(二)可行性分析
- 技术可行性:Python拥有丰富的自然语言处理库(如jieba、NLTK、Gensim等)、知识图谱构建工具(如py2neo、NetworkX等)和可视化库(如Matplotlib、PyQt5等),能够满足古诗词知识图谱构建和情感分析的技术需求。同时,相关的算法和模型在自然语言处理领域已经得到了广泛的应用和研究,具有一定的成熟度。
- 数据可行性:网络诗词数据库、古籍文献和诗词选集等渠道提供了丰富的古诗词数据资源,为研究提供了充足的数据支持。此外,还可以通过人工标注的方式构建情感分析数据集,满足模型训练的需求。
- 时间可行性:根据研究计划和进度安排,在规定的时间内完成论文的选题、研究、实验、开发和撰写工作是可行的。在研究过程中,将合理安排时间,充分利用课余时间和假期,确保研究的顺利进行。
七、参考文献
[1] 冯志伟. 自然语言处理简明教程[M]. 上海外语教育出版社, 2018.
[2] 王昊奋, 李骏杰, 漆桂林等. 知识图谱:方法、实践与应用[M]. 电子工业出版社, 2019.
[3] 刘知远, 孙茂松, 林衍凯等. 面向自然语言处理的预训练模型综述[J]. 中国科学:信息科学, 2020, 50(11): 1703 - 1719.
[4] [作者姓名]. [论文题目][J]. [期刊名称], [发表年份], 卷号: [起止页码]. (古诗词情感分析相关研究文献)
[5] [作者姓名]. [论文题目][J]. [期刊名称], [发表年份], 卷号: [起止页码]. (知识图谱构建与应用相关研究文献)
[6] [作者姓名]. [论文题目][J]. [期刊名称], [发表年份], 卷号: [起止页码]. (自然语言处理在传统文化领域的应用文献)
[7] 古诗文网. [在线网址]. (数据收集来源)
[8] 诗词名句网. [在线网址]. (数据收集来源)
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻