- 博客(8)
- 收藏
- 关注
原创 C++ 利用堆实现优先队列
本文介绍了堆的逻辑结构和实现方式,指出堆在逻辑上是完全二叉树,但实际实现通常使用数组作为物理结构。堆的主要应用包括堆排序和优先队列,优先队列需要支持top()、pop()、push()等操作。文章通过C++代码展示了优先队列的实现,重点讲解了上浮(swim)和下沉(sink)两个核心操作,它们在堆的构建和维护中起着关键作用。代码示例演示了如何使用这些操作实现优先队列的基本功能。
2025-06-12 20:22:24
116
原创 矩阵论 •「对角化之 SVD 分解」
设TTT是线性空间VVV上的一个线性变换,若存在一非零向量v⃗\vec{v}v,使得Tv⃗λv⃗Tvλv,则称λ\lambdaλ为线性变换TTT的一个「特征值」,v⃗\vec{v}vv⃗≠0⃗v0)为线性变换TTT的「属于特征值λ\lambdaλ的特征向量根据线性变换与矩阵的对应关系,设v1⃗v2⃗vn⃗v1v2...vn是线性空间VVV的一个基,线性变换TTT。
2024-11-07 21:53:25
624
2
原创 矩阵论 •「线性子空间及运算」
设V1是线性空间V的一个,且对V∀xy∈V1时有唯一的xy∈V1(加法封闭)∀x∈V1时有唯一的kx∈V1(数乘封闭)则称线性空间V1是线性空间V的一个「我们应该感知到,线性子空间V1,只不过它内含的元素集合是线性空间V所含元素集合的子集;最小的线性子空间是只含0的线性空间0,最大的线性子空间是V本身。因为子空间也是线性空间,所以关于线性空间的一切概念(基、维数等)也适用于线性子空间.
2024-11-07 21:17:25
936
原创 矩阵论 •「线性空间、基变换与向量坐标变换」
《矩阵论》的课程上讲解了线性空间的详细定义(两种运算、满足八个性质)。在此我们只对线性空间(针对向量空间)做简要定义:∀x⃗,y⃗∈V时,有唯一的 x⃗+y⃗∈V(加法封闭)∀x⃗∈V时,有唯一的 kx⃗∈V(数乘封闭)\forall \vec{x},\vec{y} \in V时, 有唯一的\ \vec{x}+\vec{y} \in V (加法封闭)\\\forall \vec{x} \in V时, 有唯一的\ k\vec{x} \in V (数乘封闭)\\∀x,y∈V时,有唯一的 x+y∈V(
2024-11-07 21:06:15
877
原创 windows 和 ubuntu (20.4) 双系统:开机选择系统时,等待时间的设置
windows 和 ubuntu (20.4) 双系统:开机选择系统时,等待时间的设置
2024-01-27 16:22:18
2076
原创 Ubuntu (Linux) 下创建软链接(即符号链接,相当于windows下的快捷方式)方法
【代码】Ubuntu (Linux) 下创建软链接(即符号链接,相当于windows下的快捷方式)方法。
2024-01-23 16:28:50
1268
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人