JAVA8-HashMap源码阅读

基础操作, 基础结构

内部使用的是 数组 + 链表, 红黑树
在这里插入图片描述
不指定的话, 数组默认的大小是 16, 负载因子是 0.75

如何计算hash

  • hash: 计算 key.hashCode 并将其高位传播(XOR) 到低位. 因为hash表使用的是 2次幂的掩码(2进制全1), hash码集合在当前掩码上变化的话总是会冲突.
    在这里插入图片描述

线程安全

不是线程安全的, 如果某个线程进行了结构性修改, 必须要有外部的同步机制. 仅仅是修改 hashmap 中已存在的 key 所关联的值不算结构性修改

要实现线程安全, 通常使用synchronized关键字, 或者是使用 Collections.synchronizedMap 包装map(最好是在创建 map 的时候就使用, 否则可能会导致非线程安全的调用).

Map m = Collections.synchronizedMap(new HashMap(...));

操作

插入

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //table还没初始化的, 则执行初始化
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //该位置还没有节点, 创建新节点
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //没有找到相等的节点,开始遍历链表/树
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //节点数目达到8个, 转化成红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
  • table 的初始化是在第一次 putVal 的时候
  • size + 1 > threshold 的时候会扩容
  • 节点比较, 先比较hash, 再比较 eqauls, 如果相等则啥也不干
  • 树操作, 先通过链表构造一个双端队列,然后执行树化.

扩容

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {//如果大于最大容量, 则不再扩容
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            //遍历旧的节点
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    //不是链表则直接取余, newCap - 1 值为 n 位 1
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode) //如果是树节点则分裂
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            // oldCap 是 10000.. 的形式
                            //相当于利用 那位1分类, 分成两份, 低位链表放 j, 高位链表放 j + oldcap
                            if ((e.hash & oldCap) == 0) {//e.hash = key 的hash 高16 ^ 低16位
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        //为什么这里要分成高位和低位?
                        //原来的链表根据 oldCap = (10..00) 中的最高位1的位置 old_1 分成两组
                        //计算下标的公式: 数组下标 tab_i = hash & (cap - 1)
                        //对于 hash & (oldCap -1) == 0 的 hash 来说, 
                        //他们的新下标 newTable_i = hash & (oldCap << 1 - 1) = hash & (oldCap - 1) 
                        //和原来一样, 所以没有变化
                        //而 hash & (oldCap -1) != 0 的 hash, 证明其 old_1 位是 1, 
                        //也就是说他们 newTable_i 是原来的 tabl_i 将 old_1 位置 1
                        //这个置 1 操作正好等于加 oldCap (因为 oldCap = 10..00)
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

删除

大同小异, 找到位置, 然后删除, 主要还是得处理树节点.

迭代

返回的是一个内部类: Values

    final class Values extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<V> iterator()     { return new ValueIterator(); }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super V> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

FastFail

在所有 iterator 被创建之后,如果 hashmap 被进行了结构化的修改(除了iterator本身的remove调用)之后, 就会抛ConcurrentModificationException 异常, 在面对同步修改的时候, 能尽快抛出异常, 所以说是 FastFail.

FF在线程不安全的修改的时候可能会失效, 所以不能用其来作为程序的依赖, 而仅仅应该用来检测bug而已.

FF的原理很简单, 在修改hash结构的时候, modCount 变量 +1, 比如 add, remove 操作的时候. 然后在创建 Iterator 的时候, 就记录这个 modCount, 每次调用 next 方法的时候, 就检查一下当前的 modCount 和 当时保存的 modCount 是不是一致,不一致就抛异常.

forEach 也是这样, 操作前保存 modCount , 调用 consume 之后, 检查 modCount.

在这里插入图片描述

性能

get, put 操作都是常量的时间, 因为把元素都分散到不同的 bucket 中. 对集合的迭代时间跟 hashmap 的 capacity (bucket的数量) * size (键值对的数量) 成比例, 所以如果对迭代的性能要求很高, capacity 不要设太高, 负载因子(reload factor)不要设太低.

capacity 决定了 hashmap 的初始容量, 负载因子决定什么时候扩容. 当键值对达到 capacity * 负载因子的时候, 会重新扩容(内部数据结构的重建). 这样 hash 表 大概是 bucket 的数量的2倍.

通常来说, 负载因子 取 .75 最好地平衡了性能和空间开销. 设置 capacity 的时候要考虑这个负载因子. 当 hash 表的中 初始数量 大于 最大可能的元素数目 / 负载因子 的时候, 就不会发生扩容.

太多个key使用相同的 hashCode() 的时候, 会大大的影响性能.

衍生结构

  • HashTable: 说衍生的话, 应该是 HashMap 从 HashTable 衍生过来, 区别在于 HashTable 是线程安全的, 但是不允许使用 null 的 key 或者 value; HashMap是线程的不安全的, 但是允许 null 的 key 和 value

算法

寻找大于某数的最小2次幂数

整个原理有点像细胞分裂(最大化复制黏贴), 我们考虑最高位的1, 在 n |= n >>> 1 之后, 最高的2位都变成了1; 在 n|=n>>>2 之后, 最高的4位变成了1; 依次类推, 最后总能得到一个全 1 的数, + 1 之后就变成进一位高位为 1, 其余为 0 的数字, 也就是 2次幂数.

现在来考虑特殊情况, 如果 cap 为 0, n = -1 , 变成负数, 符号位是 1 , 最后的数也是负数, 直接返回1.
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值