13、数字图书馆领域的MTCC应用解析

数字图书馆领域的MTCC应用解析

1. 数字图书馆系统相关介绍

数字图书馆系统包含多种类型,其中GESIS的Solr安装与之前介绍的数字图书馆不同,它是一个搜索服务器,而非数字图书馆。其仅提供基于HTML的最小用户界面,支持向系统提交查询并提供系统操作统计信息。GESIS Solr安装包含与Sowiport和IREON门户相同的文档集合,用于自动化搜索任务和复杂查询,无需数字图书馆的全部功能。它代表了数字图书馆底层基础设施的一部分,我们探讨MTCC能否用于测试数字图书馆的此类子系统以及图书馆本身。

2. 测试相关服务和步骤
2.1 被测系统的操作

通过检查测试集来确定相关系统家族的测试相关功能和步骤。这些测试集来自之前定义的手动和自动化测试,手动测试由领域专家指定,包含系统的可测试故障。数字图书馆最重要的功能是文档搜索和搜索结果展示,此外,查询细化选项也很重要。MTCC必须包含代表这些功能及其与用户交互的模型,还需具备对检索测试进行建模的能力。
- 搜索功能建模 :MTCC应用于数字图书馆时,需包含表示制定查询并提交到系统的功能模型,该模型要涵盖系统提供的所有搜索选项。
- 结果列表处理 :提供表示结果页面中潜在相关文档列表的功能,以及进一步细化该列表或与之交互的功能。
- 用户交互建模 :包含与搜索表单的交互,如输入搜索词、选择过滤值或与结果列表中的文档代理交互。
- 搜索细化功能
- 导航器 :Sowipor

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值