- 博客(54)
- 收藏
- 关注
原创 Matlab中的persistent 持久变量
在matlab function中声明一个persistent 持久变量,在每次调用这个函数的时候,会把这个变量值进行保存。下次调用时,在这个值基础上进行更新。声明的时候不要赋值。具体可查看帮助文档中的示例。
2025-08-07 17:50:29
188
原创 非线性系统的线性化
线性化的作用一是当系统在平衡点附近工作时,可以以线性系统替代非线性系统进行性能分析或控制器设计。二是可以通过线性系统的稳定性判断非线性系统平衡点的稳定性。,然后取线性项(0阶项和1阶项),忽略高次项,得到线性数学模型。处进行线性化,方法是将非线性函数在平衡点处展开为。
2025-07-30 14:50:46
198
原创 CarSim 使用教程
Run control 是默认界面,包含Math Model: 车辆设置Procedure: 工况设置Miscellaneous: 其他Run control:运行仿真测试。点run 可运行模型,通过video/plot查看;也可加载simulink模型Analyze Result(Post Processing): 通过适配和图形,观察仿真测试结果。
2025-07-15 17:44:53
415
原创 汽车制动系统 - 结构篇
制动系统分为制动助力系统和ESC电子稳定系统。助力系统有真空助力或者电子助力eBooster等方案。助力功能称为BBF(Basic Booste Function)ESC 集成ABS/TCS/VDC等基础功能,还包括AVH/HHC/AEB等附加功能(博世称VAF Value Added Function)。二者可以分立,称为two box方案;也可以合二为一,称为one box方案.
2025-07-10 16:21:11
738
原创 控制理论 与数学
作为工程技术人员,熟悉、精通几种常用的控制算法即可,比如常用的PID、MPC等。不用化过多时间在理论研究中,那不是工程技术人员要做的事情。工程人员还是要聚焦到具体的行业应用。现在控制领域的文章都是大篇幅的数学推导,是否脱离了控制本身的工程应用愿景?
2025-07-10 14:34:57
105
原创 状态空间方程、零极点模型、传递函数模型的 matalb应用
sys1 = ss(a,b,c,d) % 给定a,b,c,d矩阵创建状态空间方程sys2 = zpk(sys1) % 将状态空间方程转换为zpk零极点模型sys3 = ss(sys1) % 将状态空间方程转换为传递函数模型。
2025-07-10 13:44:51
190
原创 控制理论概述
开环控制系统:系统的输出不返送到系统的输入,则称为开环控制系统。开环控制系统的控制精度完全取决于模型的精度核特性调整的准确度,只要受控对象稳定,系统就能稳定工作。开环控制系统的缺点:抗扰动能力差,系统对扰动和不确定性因素的作用非常敏感,将使系统的被控量偏离给定值,直接影响控制精度。闭环控制系统:系统的输出返送到系统的输入,通过被控量与参考输入(给定信号)的偏差对系统进行控制,达到减小或消除偏差的控制效果。反馈是抑制扰动和不确定性因素影响和提高系统控制精度的有效发放,是现代自动控制系统的基本形式。
2025-07-10 13:30:57
221
原创 动态系统的稳定性
动态系统的稳定性,简单来说,是指运动受到扰动时其状态发生变化,如果扰动去除后运动可以恢复到原来的状态则称该运动时稳定的,否则就是不稳定的。稳定性有多少不同的定义。控制工程中分为内部稳定性和外部稳定性。
2025-07-10 09:12:20
147
原创 相平面法分析车辆的稳定边界
β-γ相平面是传统相平面法在车辆领域的特例应用,其合法性源于γ物理本质上是β的微分表征。通过该平面,工程师可直接观察轮胎力饱和、载荷转移等非线性效应的影响,为稳定性控制提供可视化理论工具。
2025-07-07 17:31:20
1009
原创 李雅普诺夫第一法
李雅普诺夫第一法通过特征根实部符号提供了一种快速稳定性判据,尤其适合线性系统及弱非线性系统的局部分析✅。但需注意其失效场景及与输出稳定性的差异。对于临界或强非线性系统,应结合第二法或其它方法深入验证。
2025-07-07 09:11:20
436
原创 线性化,泰勒级数,雅克比矩阵
泰勒级数: 就是用无穷级数去逼近一个光滑函数。当函数在某个点具有任意阶导数时,函数可以表示成该点的泰勒级数泰勒级数的一个主要应用是在近似计算中,特别是在科学和工程领域。泰勒级数可以用来描述几乎所有函数的行为,包括周期函数和非周期函数。这种级数的应用还包括最小二乘法和差值法,因为它们可以用来拟合数据并估计预测值。
2025-07-04 17:02:45
179
原创 脉冲函数和冲激函数
脉冲函数(离散系统)与冲激函数(连续系统)是信号处理中两个核心但易混淆的概念,其区别主要体现在数学定义、物理实现及工程应用三个方面:
2025-07-04 15:33:10
124
原创 雅可比矩阵与黑塞矩阵
当函数达到极值点时,雅可比矩阵的每个元素都为零,但这并不意味着该点是一个平凡的零点。在极值点附近,尽管一阶导数为零,但函数的二阶导数(或Hessian矩阵)可以提供更多信息,帮助判断该点是局部极小值、极大值还是鞍点。如果实部全为负,则系统是稳定的;鞍点:如果雅可比矩阵为零,并且Hessian矩阵是既有正特征值也有负特征值,则该点是鞍点。局部极大值:如果雅可比矩阵为零,并且Hessian矩阵是负定的,则该点是局部最大值。局部极值:如果雅可比矩阵为零,并且Hessian矩阵是正定的,则该点是局部最小值。
2025-07-04 13:22:04
157
原创 微分方程的特征方程
对于常系数齐次线性微分方程,特征方程是通过将微分方程中的每一项的导数阶数转化为该项的幂指数,同时保持系数不变,从而得到的方程。微分方程都有特征方程。特征方程的解可以用来确定微分方程的通解。《高等数学-上册》微分方程章节。
2025-07-04 11:31:08
234
原创 函数的种类
可通过有限次代数运算(加、减、乘、除、乘方、开方)定义的函数45。无法通过有限次代数运算定义,需借助极限、微分方程等分析工具描述。指数、对数、三角等超越运算。
2025-07-04 11:22:33
135
原创 控制理论 - 可达集
此外,也可以使用符号计算的方法来求解可达集的边界,例如使用哈密尔顿-雅可比-贝尔曼方程(Hamilton-Jacobi-Bellman equation)等。在状态估计中,可达集可以用来确定给定观测数据下,系统状态可能的范围。此外,在控制系统中,可达集也可以用来设计控制器,以确保系统能够在给定时间内到达某个状态。可达集(Reachable Set)是指在一个动态系统中,从给定的初始状态出发,经过系统的演化,所能够到达的所有状态的集合。该集合中的所有状态都是由初始状态通过有限次系统演化得到的。
2025-06-26 09:57:29
212
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人