1、num_bag_sets
2、n_estimators 暂时这些model有用
'RF': [
{'criterion': 'gini', 'n_estimators': 1000,'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}},
{'criterion': 'entropy','n_estimators': 1000, 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}},
# {'criterion': 'squared_error','n_estimators': 1000, 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression']}},
],
'XT': [
{'criterion': 'gini', 'n_estimators': 1000,'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}},
{'criterion': 'entropy','n_estimators': 1000, 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}},
# {'criterion': 'squared_error', 'n_estimators': 1000,'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression']}},
],
TODO:
1、gbm(lgb)的extra_trees 和gmblarge 能不能给cat和xgb也用?
'GBM': [
{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}},
{},
'GBMLarge',
],
'CAT': {},
'XGB': {},