这个题目转化为以下问题是关键:
1. X[i] * P1 + Y[i] * P2 <= cookies[i] (For every i). 2. S = X[0] + X[1] + ... X[n-1] = Y[0] + Y[1] + ... Y[n-1] 3. .X[i] + Y[i] <= S (For every i)
这个其实很显然,而且S具有单调性,为二分做准备。
但是如果一开始就直接陷入高复杂度的dp中,而忽视了这个简单的单调性就比较悲剧。
二分判断d[S][S] 是否可以达到,这样的dp一般可以转化为d[N]最大可以跟什么数搭配,于是二维的状态降了一维。
const int N = 1005;
int d[N], a[N], n;
int g[N];
bool ok(int s, int p1, int p2) {
int i, j, k, t;
memset(d, -1, sizeof(d));
d[0] = 0;
for (i = 0; i < n; ++i) {
memset(g, -1, sizeof(g));
for (j = 0; j * p1 <= a[i]; ++j) {
k = (a[i] - j * p1) / p2;
k -= max(j + k - s, 0);
if (k < 0) continue;
for (t = s; t >= j; --t) {
if (d[t - j] == -1) continue;
g[t] = max(g[t], d[t - j] + k);
}
}
for (j = 0; j <= s; ++j) {
d[j] = g[j];
}
}
return d[s] >= s;
}
class ColorfulCookie {
public:
int getMaximum(vector <int> a, int P1, int P2) {
int i, j, k, t;
n = a.size();
for (i = 0; i < n; ++i) {
::a[i] = a[i];
}
int l = 0, r = 1000;
while (l <= r) {
int mid = (l + r) >> 1;
if (ok(mid, P1, P2)) l = mid + 1;
else r = mid - 1;
}
return r * (P1 + P2);
}
};