528_1000

这个题目转化为以下问题是关键:

1.      X[i] * P1 + Y[i] * P2    <= cookies[i]  (For every i).
2.  S = X[0] + X[1] + ... X[n-1]  = Y[0] + Y[1] + ... Y[n-1] 
3.     .X[i]      + Y[i]         <=     S       (For every i)

这个其实很显然,而且S具有单调性,为二分做准备。

但是如果一开始就直接陷入高复杂度的dp中,而忽视了这个简单的单调性就比较悲剧。

 

二分判断d[S][S] 是否可以达到,这样的dp一般可以转化为d[N]最大可以跟什么数搭配,于是二维的状态降了一维。

 

 

const int N = 1005;

int d[N], a[N], n;
int g[N];

bool ok(int s, int p1, int p2) {
	int i, j, k, t;
	memset(d, -1, sizeof(d));
	d[0] = 0;
	for (i = 0; i < n; ++i) {
		memset(g, -1, sizeof(g));
		for (j = 0; j * p1 <= a[i]; ++j) {
			k = (a[i] - j * p1) / p2;
			k -= max(j + k - s, 0);
			if (k < 0) continue;
			for (t = s; t >= j; --t) {
				if (d[t - j] == -1) continue;
				g[t] = max(g[t], d[t - j] + k);
			}
		}
		for (j = 0; j <= s; ++j) {
			d[j] = g[j];
		}
	}
	return d[s] >= s;
}
class ColorfulCookie {
public:
	int getMaximum(vector <int> a, int P1, int P2) {
		int i, j, k, t;
		n = a.size();
		for (i = 0; i < n; ++i) {
			::a[i] = a[i];
		}
		int l = 0, r = 1000;
		while (l <= r) {
			int mid = (l + r) >> 1;
			if (ok(mid, P1, P2)) l = mid + 1;
			else r = mid - 1;
		}
		return r * (P1 + P2);
	}
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值