CF - 1139D - Steps to One

7 篇文章 0 订阅
5 篇文章 0 订阅

此题学到一招,就是将概率dp转化为DAG图
考虑概率f[],设f[i]表示当前数组的gcd为i是走向gcd为1的期望步数,因为每次可以选择一个数(1 , m) ,添加到结尾,所以相当于每次从当前x点走向gcd(x , k) , 所以从每个点走,都有m条路径,,最后加一个虚点, 连接第一次选择的数,所以答案也就相当于从虚点走向1,只要求从虚点走向第一次选择的点就可, 答案: a n s = 1 + ∑ 1 m f [ i ] m ans = 1 + \frac{\sum_{1}^{m}{f[i]}}{m} ans=1+m1mf[i]

考虑怎么求f[n] , 从点n可以走向 d , [ d ∣ n ] d , [d | n] d,[dn] , 所以 f [ n ] = 1 + ∑ i = 1 m f [ g c d ( n , i ) ] m f[n] = 1 + \frac{\sum_{i = 1}^{m}{f[gcd(n , i)]}}{m} f[n]=1+mi=1mf[gcd(n,i)]
= > m ∗ f [ n ] = m + ∑ i = 1 m f [ g c d ( n , i ) ] \\=>m * f[n] = m + \sum_{i = 1}^{m}{f[gcd(n , i)]} =>mf[n]=m+i=1mf[gcd(n,i)]
= > m ∗ f [ n ] = m + ∑ d ∣ n f [ d ] ∗ ∑ [ g c d ( n , i ) = = d ] \\=>m * f[n] = m + \sum_{d |n}{f[d] * \sum[gcd(n , i) == d]} =>mf[n]=m+dnf[d][gcd(n,i)==d]下面是莫比乌斯反演
= > ∑ i = 1 m [ g c d ( n , i ) = = d ] \\=>\sum_{i = 1}^{m}[gcd(n , i) == d] =>i=1m[gcd(n,i)==d]
= > ∑ i = 1 m d [ g c d ( n d , i ) = = 1 ] \\=>\sum_{i = 1}^{\frac{m}{d}}[gcd(\frac{n}{d} , i) == 1] =>i=1dm[gcd(dn,i)==1]
= > ∑ i = 1 m d ∑ t ∣ g c d ( n d , i ) μ ( t ) \\=>\sum_{i = 1}^{\frac{m}{d}}\sum_{t|gcd(\frac{n}{d} , i)}\mu(t) =>i=1dmtgcd(dn,i)μ(t)
= > ∑ i = 1 m d ∑ t ∣ n d & t ∣ i μ ( t ) \\=>\sum_{i = 1}^{\frac{m}{d}}\sum_{t|\frac{n}{d} \&t|i}\mu(t) =>i=1dmtdn&tiμ(t)
= > ∑ t ∣ n d μ ( t ) ∗ ⌊ m d ∗ t ⌋ \\=>\sum_{t|\frac{n}{d}}\mu(t) * \lfloor\frac{m}{d*t}\rfloor =>tdnμ(t)dtm
带 回 原 式 带回原式

= > m ∗ f [ n ] = m + ∑ d ∣ n f [ d ] ∗ ( ∑ t ∣ n d μ ( t ) ∗ ⌊ m d ∗ t ⌋ ) =>m * f[n] = m + \sum_{d |n}{f[d] * (\sum_{t|\frac{n}{d}}\mu(t) * \lfloor\frac{m}{d*t}\rfloor)} =>mf[n]=m+dnf[d](tdnμ(t)dtm)
这个时候发现在枚举d的时候d有可能等于n, n也是n的约数, 拿出来之后

m ∗ f [ n ] = m + ∑ d ∣ n & d ! = n f [ d ] ∗ ( ∑ t ∣ n d μ ( t ) ∗ ⌊ m d ∗ t ⌋ ) + f [ n ] ∗ ⌊ m n ⌋ m * f[n] = m + \sum_{d |n\&d!=n}{f[d] * (\sum_{t|\frac{n}{d}}\mu(t) * \lfloor\frac{m}{d*t}\rfloor)} + f[n] * \lfloor\frac{m}{n}\rfloor mf[n]=m+dn&d!=nf[d](tdnμ(t)dtm)+f[n]nm
= > f [ n ] = m + ∑ d ∣ n & d ! = n f [ d ] ∗ ( ∑ t ∣ n d μ ( t ) ∗ ⌊ m d ∗ t ⌋ ) m − ⌊ m n ⌋ + =>f[n] = \frac{m + \sum_{d |n\&d!=n}{f[d] * (\sum_{t|\frac{n}{d}}\mu(t) * \lfloor\frac{m}{d*t}\rfloor)}}{m - \lfloor\frac{m}{n}\rfloor} + =>f[n]=mnmm+dn&d!=nf[d](tdnμ(t)dtm)+

这个复杂度我不知道是怎么过的,先预处理出来 μ ( t ) \mu(t) μ(t)预处理每个数的约数, 然后先枚举n,再枚举d,最后枚举t

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <unordered_map>
#include <vector>
#include <map>
#include <list>
#include <queue>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <stack>
#include <set>
#pragma GCC optimize(3 , "Ofast" , "inline")
using namespace std ;
#define ios ios::sync_with_stdio(false) , cin.tie(0) , cout.tie(0)
#define x first
#define y second
typedef long long ll ;
const double esp = 1e-6 , pi = acos(-1) ;
typedef pair<int , int> PII ;
const int N = 2e5 + 10 , INF = 0x3f3f3f3f , mod = 1e9 + 7;
ll in()
{
ll x = 0 , f = 1 ;
char ch = getchar() ;
while(!isdigit(ch)) {if(ch == '-') f = -1 ; ch = getchar() ;}
while(isdigit(ch)) x = x * 10 + ch - 48 , ch = getchar() ;
return x * f ;
}
ll mu[N] , tot , prime[N] , vis[N] , f[N] , inv[N] ;
vector<ll> v[N] ;
int main()
{
ll m = in() ;
mu[1] = 1 ;
for(ll i = 2; i < N ;i ++ ) {
  if(!vis[i]) prime[++ tot] = i , mu[i] = -1 ;
  for(ll j = 1 ;j <= tot && i * prime[j] < N ;j ++ )
   {
     vis[i * prime[j]] = 1 ;
     if(i % prime[j] == 0) break ;
     mu[i * prime[j]] = - mu[i] ;
   }
}
inv[1] = 1 ;
for(ll i = 2; i < N ;i ++ )
 inv[i] = (mod - mod / i) * inv[mod % i] % mod ;
f[1] = 0 ;
for(ll i = 1; i < N ;i ++ ) {
  for(ll j = i ;j < N ;j += i)
   v[j].push_back(i) ;
}
for(ll i = 2; i <= m ;i ++ ) {
  ll n = i ;
  ll ans = m ;
  for(auto d : v[n]) {
    if(d == n) break ;
    ll res = 0 ;
    for(auto t : v[n / d]) {
      res += mu[t] * (m / d / t) % mod ;
      res %= mod ;
    }
    res = res * f[d] % mod ;
    (ans += res) %= mod ;
  }
  ans = ans * inv[m - m / n] % mod ;
  f[i] = ans ;
}
ll ans = 0 ;
for(int i = 1; i <= m ;i ++ )
 (ans += f[i]) %= mod ;
ans = ans * inv[m] % mod ;
ans ++ ;
cout << ans << endl ;
return 0 ;
}
/*
*/

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值