- 博客(3)
- 收藏
- 关注
原创 YOLOV1训练阶段
模型由gridcell产生的bounding boxes 中与手动标签的框体,附带率大的进行预测,通过损失函数控制框的的HW,和网格的xy。通过labelImg标注检测框送入模型。
2023-01-03 16:51:06 143 1
原创 YOLOV1预测阶段
每一个gridcell还能生成20个类别的条件概率,上图表示,条件概率最高的类别占有的框,紫色表示bicycle的条件概率比较高的区域,每一个gridcell只有一个类别,从20个类别中选概率最高的,说明每一个gridcell智能预测一个物体,7。对20个类别向量×2个置信度获得每个预测框的类别概率,共98个长条,对长条将置信度小于某个阈值值为0,然后进行由高到低的排序,将后概率依次与第一个对比,如果产生的交并补大于某个值,就把后面的概率置为0。2=98个框,有的置信度高保存,有的置信度底丢弃。
2023-01-03 16:46:46 217
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人