Datawhale AI夏令营第四期 大模型应用开发 Task3.2:案例:AI科研助手

动手学大模型应用全栈开发

学习赛提交规则

提交内容&要求

  1. 应用方案(必选):项目背景、产品功能、技术方案、运行效果、应用价值及团队介绍等。PDF或PPT格式,不超过100MB。

  2. 应用作品(必选):应用体验入口及体验方式

  3. 项目代码(可选):应用程序源代码、必要的编译产物和依赖库、程序运行指引文档README等,确保可复现。

评选规则

  • 多位评委交叉评审,按总分从高到低排序

评委评分维度

学习赛激励

  1. 整体奖项

    1. 多位评委交叉评审,按总分从高到低排序

    2. 若作品部署到魔搭创空间,按照应用点赞热度可获得最多10%的加分

    3. 若作品开源到GitHub,按照项目Star数可获得最多10%的加分

    4. 前10%卓越作品奖10% - 30%杰出作品奖其他作品 优秀作品奖(提交了可访问且有内容的链接)

    5. Top1:一等奖一名,获得Datawhale X 浪潮信息荣誉证书、Datawhale夏令营奖学金

    6. Top2-Top3:二等奖2名,获得Datawhale X 浪潮信息荣誉证书、Datawhale夏令营奖学金

    7. Top4-Top10:三等奖7名,获得Datawhale X 浪潮信息荣誉证书

  2. 最佳奖项

    1. 最佳创新奖 1名,创新性 + 技术成熟度等维度综合最高的作品

    2. 最佳应用奖 1名,应用性、商业价值与应用demo等维度综合最高的作品

  3. 以上奖项为并列关系,同一个作品可同时获得多个奖项

  4. 小彩蛋:从优质作品选出大模型经典应用案例,将有机会获得为期一周(168小时)的算力资源等福利,并获得品牌宣传和曝光机会

项目背景

随着学术研究领域的快速发展,研究人员需要处理大量的文献资料。传统的文献综述方法往往耗时且效率低下,而且很难及时跟进最新的研究成果。近年来,自然语言处理技术(NLP)的进步,使得机器能够理解和处理人类语言成为可能。因此,开发一款能够自动分析、理解并回答关于论文内容的问题的AI科研助手变得十分必要。

产品功能

  • 论文概括:AI科研助手能够快速阅读并理解一篇论文的主要内容,并生成简洁明了的摘要。

  • 内容问答:用户可以通过自然语言提出与论文相关的问题,系统能够给出准确的答案。

  • 关键词提取:从论文中提取关键概念和术语,帮助用户快速了解研究重点。

  • 论文对比:比较两篇或者多篇论文的内容,总结他们之间的异同点。

  • 相关工作推荐:根据用户的兴趣领域推荐相关的最新研究成果。

应用价值

  • 提高工作效率࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值