Datawhale AI 夏令营(第五期) 李宏毅苹果书 Task 3 《深度学习详解(入门)》- 2 机器学习框架&实践攻略

机器学习任务攻略_哔哩哔哩_bilibili

《深度学习详解》的第二章,主要探讨了机器学习实践中的方法论,以及如何解决模型训练过程中可能出现的问题。

主要内容

  • 实践方法论的重要性
    • 强调实践方法论对于机器学习算法应用的重要性。
    • 提醒关注训练数据的损失,判断模型是否真正学到了东西。
  • 模型偏差
    • 解释模型偏差的概念,即模型过于简单,无法捕捉到数据的真实规律。
    • 举例说明模型偏差导致训练损失大的情况。
    • 建议通过增加特征、增大模型、使用深度学习等方法来增加模型的灵活性。
  • 优化问题
    • 解释优化问题的概念,即梯度下降等优化算法无法找到最优解。
    • 举例说明优化问题导致训练损失大的情况。
    • 建议通过比较不同模型、使用其他优化算法等方法来解决优化问题。
  • 过拟合
    • 解释过拟合的概念,即模型过于复杂,对训练数据过度拟合,导致泛化能力差。
    • 举例说明过拟合导致测试损失大的情况。
    • 建议通过增加训练数据、数据增强、减少模型参数、使用正则化等方法来解决过拟合问题。
  • 不匹配
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值