黑马程序员-继承

package cn.itcast;

/*
*继承
(1)把多个类中相同的成员给提取出来定义到一个独立的类中。然后让这多个类和该独立的类产生一个关系,
这多个类就具备了这些内容。这个关系叫继承。
(2)Java中如何表示继承呢?格式是什么呢?
A:用关键字extends表示
B:格式:
class 子类名 extends 父类名 {}
(3)继承的好处:
A:提高了代码的复用性
B:提高了代码的维护性
C:让类与类产生了一个关系,是多态的前提
(4)继承的弊端:
A:让类的耦合性增强。这样某个类的改变,就会影响其他和该类相关的类。
原则:低耦合,高内聚。
耦合:类与类的关系
内聚:自己完成某件事情的能力
B:打破了封装性
(5)Java中继承的特点
A:Java中类只支持单继承
B:Java中可以多层(重)继承(继承体系)
(6)继承的注意事项:
A:子类不能继承父类的私有成员
B:子类不能继承父类的构造方法,但是可以通过super去访问
C:不要为了部分功能而去继承
(7)什么时候使用继承?
A:继承体现的是:is a的关系。
B:采用假设法
(8)Java继承中的成员关系
A:成员变量
a:子类的成员变量名称和父类中的成员变量名称不一样.
b:子类的成员变量名称和父类中的成员变量名称一样,如何访问?
子类的方法访问变量的查找顺序:
在子类方法的局部范围找,有就使用。
在子类的成员范围找,有就使用。
在父类的成员范围找,有就使用。
找不到,就报错。
B:构造方法
a:子类的构造方法默认会去访问父类的无参构造方法
是为了子类访问父类数据的初始化
b:父类中如果没有无参构造方法,怎么办?
子类通过super去明确调用带参构造
子类通过this调用本身的其他构造,但是一定会有一个去访问了父类的构造
让父类提供无参构造
C:成员方法
a:子类的成员方法和父类中的成员方法名称不一样,这个太简单
b:子类的成员方法和父类中的成员方法名称一样,这个怎么访问呢?
通过子类对象访问一个方法的查找顺序:
在子类中找,有就使用
在父类中找,有就使用
找不到,就报错
*/

public class ExtendsDemo {

/**
 * @param args
 */
public static void main(String[] args) {
    // TODO Auto-generated method stub
    Student s = new Student("宋青华",23);
    s.eat();
    s.sleep();
    System.out.println("---------------------");
    Teacher t = new Teacher("俞洪敏",30);
    t.eat();
    t.sleep();
}

}

// 人类

class Person {
String name;
int age;

public void eat() {
    System.out.println("姓名:" + name + ",年龄:" + age);
    System.out.println("吃水果");
}

public void sleep() {
    //System.out.println("姓名:" + name + ",年龄:" + age);
    System.out.println("睡觉");
}

}

class Student extends Person {
public Student() {
}

public Student(String name, int age) {
    this.name = name;
    this.age = age;
    System.out.println("study hard");
}

}

class Teacher extends Person {
public Teacher() {
}

public Teacher(String name, int age) {
    this.name = name;
    this.age = age;
    System.out.println("somking");
}

}

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值