Celery是一个简单可靠的分布式任务队列,它主要关注于实时任务处理,同时也能够支持定时任务。这个项目目前在github上有14.8k颗星,是一个比较热门的项目。Celery是采用Python语言编写的,但其他语言也可以实现它的协议,或者通过webhook与之交互。Celery本身也比较精巧,据官方文档介绍,Celery的核心总共只有7000多行代码,但有14000多行测试代码,所以质量应该也还是不错的。那今天我们来一起看一下Celery的基本概念和一个小例子。
Celery简化的架构示意图如下
从这个图中我们可以看出,基本上Celery的架构就是一个典型的生产者-消费者模式。Celery中有一些基本的概念与术语,下面我们分别来了解一下
基本概念
任务(Task)
任务是被Celery的Worker执行的基本单位,一个任务一般是Python中的一个函数
@app.task
def add(x, y):
return x + y
生产者(Producer)
生产者,也就是请求任务执行的客户端。他通过发送一个消息给broker,来要求某个任务的执行。采用delay方法能发出一个这样的message,delay()方法实际上会把工作交给apply_async()
add.delay(2, 2)
# 等效于
add.apply_async((2, 2))
消费者(Consumer)
在Celery中消费者就是是Worker,Worker本身并不执行任务。当Worker从broker接收到消息之后,会让Worker的子进程(execution pool中)执行Task。Worker可以启动多个,也可以分布在不同的机器上,所以能很好的支持水平扩展。
创建Worker的命令为
celery -A celery_demo worker -l info -Q demo --concurrency=3 -n worker1@%h --autoscale=3,1
消息(Message)
任务消息是生产者发给broker的要求Worker执行任务的请求。通常消息由消息头和消息体组成,消息头描述了消息的序列化类型,消息体包含任务的名字、ID和参数,一个Json格式的消息体是长这样的
{
'task': 'myapp.tasks.add',
'id': '54086c5e-6193-4575-8308-dbab76798756',
'args': [4, 4],
'kwargs': {}
}
Broker
Broker是把消息从生产者传递到消费者的消息中间件,在Celery中,一般可以使用RabbitMQ或者Redis作为broker。也有一些其他的试验性质的broker,具体支持的列表可以参见官网文档
Queue
在Celery中我们可以定义多个Queue,任务可以路由到指定的Queue中,不同的Worker可以分别处理不同的Queue中的消息
Result Backend
Result Backend是用来存放Task执行的状态和结果的。在Celery中可以使用数据库、Redis/RabbitMQ等等作为Result Backend
一个例子
了解了这些概念之后,我们来看一个简单的例子。在这个例子中,我们选用redis作为我们的消息队列。你可以选择你喜欢的方式安装reids,或者也可以使用docker
docker run -d -p 6379:6379 redis
然后我们需要安装Python的Celery和redis依赖
pip install celery
pip install redis
接下来我们来编写两个简单的task,分别求两个数的和与差,内容放在celery_test.py中。
from celery import Celery
app = Celery('celery_test', broker='redis://localhost')
app.conf.task_routes = {'celery_test.sub': {'queue': 'qsub'},
'celery_test.add': {'queue': 'qadd'}
}
@app.task
def add(x, y)
return x+ y
@app.task
def sub(x, y)
return x -y
在代码中,我们初始化了一个Celery的对象。还定义了task的路由规则,指定sub任务路由到qsub队列中, add任务路由到qadd队列中。
然后我们就可以启动Celery Worker了,这里我们使用命令行启动两个Worker,分别关注不同的queue
celery -A celery_test worker --loglevel=info -Q qsub
celery -A celery_test worker --loglevel=info -Q qadd
执行命令后如果一切正常的话,会出现以下日志
--------------
celery@host_name v4.4.2 (cliffs)
--- ***** -----
-- ******* ---- Darwin-19.3.0-x86_64-i386-64bit 2020-04-12 > 09:55:21
- *** --- * ---
- ** ---------- [config]
- ** ---------- .> app: celery_test:0x1049aeed0
- ** ---------- .> transport: redis://localhost:6379//
- ** ---------- .> results: disabled://
- *** --- * --- .> concurrency: 8 (prefork)
-- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker)
--- ***** -----
-------------- [queues]
.> qsub exchange=qsub(direct) key=qsub
在日志中显示了我们的app的名字celery_test,使用的redis连接信息,并没有启用Result Backend,处理任务采用prefork的方式,最大允许8个并发,并且关注一个叫qsub的队列。
启动Worker之后,应用就可以向broker发请求消息了,我们一般通过delay()方法来发送,如果需要更多的选项,如发送到指定的queue,设定延时执行等,可以使用apply_async()方法
add.delay(2, 2)
sub.delay(4, 2)
用Python执行以上两句之后,在两个Worker的console中分别可以看到收到对应task并执行的日志。
[2020-04-12 10:41:20,410: INFO/MainProcess] Received task: celery_test.sub[50747bc7-9fa4-45f5-a5be-ad08b93dea09]
[2020-04-12 10:41:20,413: INFO/ForkPoolWorker-6] Task celery_test.sub[50747bc7-9fa4-45f5-a5be-ad08b93dea09] succeeded in 0.0005345229999997869s: 3
如果生产者发送请求消息的时刻,对应的Worker还没有启动,那消息将会被保存在broker中,等Worker上线之后,任务还是可以被正常执行。
对于不需要返回结果的任务,那到这里差不多就够了。如果像我们用的add/sub这样需要返回结果的任务,我们在定义celery app的时候,还要指定一个Result Backend。Celery支持多种Result Backend,如SQLAlchemy/Django ORM, Memcached, Redis, RPC (RabbitMQ/AMQP),我们甚至也可以根据celery的协议定义我们自己的backend。
这里我们还是使用redis作为我们的Result Backend,我们将上面那个创建Celery对象的语句改为
app = Celery('tasks', backend='redis://localhost', broker='redis://localhost')
然后重启Worker,可以看到之前打印的启动日志中的 results: disabled:// 变成了 results: redis://localhost/
然后我们就可以在生产者这边获得任务执行的结果了
result = add.delay(2, 2)
result.ready() # 判断任务是否完成
result.get(timeout=1) # 获得结果
如果任务执行抛出了异常,那调用result.get()方法也会抛出这个异常。如果我们不想要这个异常,可以设置propagate参数
result.get(propagate=False)
result.traceback # 获得异常的stacktrace
特别要注意的是,任务执行结果的保存和传输都是要消耗Result Backend的资源的,根据使用Result Backend的不同,会有不一样的资源占用情况,比方说在redis的话,结果会作为redis的键值对保存,默认超时时间为一天。为了确保资源能够正常释放,在开启Backend的情况下,建议总是去调用一下result.get或者result.forget方法
关于Celery今天就介绍到这里,Celery还有很多灵活的配置项和一些高级的话题,如通过Clery Beat支持定时的任务、消息的限流、安全认证、Django框架的集成等等。对这些内容感兴趣的同学们可以查看官方文档,或者期待一下也许还会有的下文