leetcode:Maximum Subarray 菜鸟解法

刚开始的思路和上面一道Maximum subarray product一样,用了各种复杂的表示,想的是这样,一个数组,他的最大和就是一直累加,若遇到负数,应保存负数前的值的和为临时最大,然后记录下这个负数,直到叠加的值超过这个负数,则应更新临时最大值,若叠加的过程中小于零了,则整段应该舍弃,从新的地方重新开始累加。这个想法说起来简单,实现起来也是调试了好几次,代码如下:

class Solution {
public:
    int maxSubArray(int A[], int n) {
        int tmp_sum=0,sum=0,negative=0,flag1=1,flag2=0,j=0,out=-65535;
        if(!(n*(n-1))) return A[0];
		for(int i =0;i < n;i++){
            if(tmp_sum<=0) {
                tmp_sum = 0;
                j=0;
                if(out<sum&&sum!=0) out = sum;
                flag1 = 1;
            }
            if(A[i]<0&&flag1){
                if(!j) sum = A[i];
                else sum = tmp_sum;
                negative = A[i];
                flag2 = 1;
				flag1 = 0;
            }
            else if(tmp_sum>0&&flag2){
                negative += A[i];
                if(negative>0){
                    sum = sum + negative;
                    flag1 = 1;
                    flag2 = 0;
                }
            }
            tmp_sum += A[i];
            j++;
            if(A[i]==0&&out<0) out =0;
		}
		if(out<sum) out = sum;
		if(out<tmp_sum) out = tmp_sum;
		return out;
    }
};

成功通过。后来发现其实远不用这么麻烦,只要更新一个max值,一个sum值就行了,可以首先判断和值是否大于0,若大于0就可继续累加,若小于0就从当前元素从新做起,然后判断一次sum和max谁大就好,代码如下:

class Solution {
public:
    int maxSubArray(int A[], int n) {
        int max = -65535;
        int sum = -65535;
        for(int i=0;i<n;i++)
        {
            sum = sum<0?A[i]:A[i]+sum;
            if(sum>max)
                max=sum;
        }
        return max;
    }
};

原来这题是如此简单的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值