刚开始的思路和上面一道Maximum subarray product一样,用了各种复杂的表示,想的是这样,一个数组,他的最大和就是一直累加,若遇到负数,应保存负数前的值的和为临时最大,然后记录下这个负数,直到叠加的值超过这个负数,则应更新临时最大值,若叠加的过程中小于零了,则整段应该舍弃,从新的地方重新开始累加。这个想法说起来简单,实现起来也是调试了好几次,代码如下:
class Solution {
public:
int maxSubArray(int A[], int n) {
int tmp_sum=0,sum=0,negative=0,flag1=1,flag2=0,j=0,out=-65535;
if(!(n*(n-1))) return A[0];
for(int i =0;i < n;i++){
if(tmp_sum<=0) {
tmp_sum = 0;
j=0;
if(out<sum&&sum!=0) out = sum;
flag1 = 1;
}
if(A[i]<0&&flag1){
if(!j) sum = A[i];
else sum = tmp_sum;
negative = A[i];
flag2 = 1;
flag1 = 0;
}
else if(tmp_sum>0&&flag2){
negative += A[i];
if(negative>0){
sum = sum + negative;
flag1 = 1;
flag2 = 0;
}
}
tmp_sum += A[i];
j++;
if(A[i]==0&&out<0) out =0;
}
if(out<sum) out = sum;
if(out<tmp_sum) out = tmp_sum;
return out;
}
};
成功通过。后来发现其实远不用这么麻烦,只要更新一个max值,一个sum值就行了,可以首先判断和值是否大于0,若大于0就可继续累加,若小于0就从当前元素从新做起,然后判断一次sum和max谁大就好,代码如下:
class Solution {
public:
int maxSubArray(int A[], int n) {
int max = -65535;
int sum = -65535;
for(int i=0;i<n;i++)
{
sum = sum<0?A[i]:A[i]+sum;
if(sum>max)
max=sum;
}
return max;
}
};
原来这题是如此简单的